【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
【答案】
(1)
證明:∵直角△ABC中,∠C=90°﹣∠A=30°.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF= CD=2t,
∴DF=AE;
(2)
解:∵DF∥AB,DF=AE,
∴四邊形AEFD是平行四邊形,
當AD=AE時,四邊形AEFD是菱形,
即60﹣4t=2t,
解得:t=10,
即當t=10時,AEFD是菱形;
(3)
解:當t= 時△DEF是直角三角形(∠EDF=90°);
當t=12時,△DEF是直角三角形(∠DEF=90°).理由如下:
當∠EDF=90°時,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t+4t=60,
∴t= 時,∠EDF=90°.
當∠DEF=90°時,DE⊥EF,
∵四邊形AEFD是平行四邊形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD= AE,
AD=AC﹣CD=60﹣4t,AE=DF= CD=2t,
∴60﹣4t=t,
解得t=12.
綜上所述,當t= 時△DEF是直角三角形(∠EDF=90°);當t=12時,△DEF是直角三角形(∠DEF=90°).
【解析】(1)利用t表示出CD以及AE的長,然后在直角△CDF中,利用直角三角形的性質求得DF的長,即可證明;(2)易證四邊形AEFD是平行四邊形,當AD=AE時,四邊形AEFD是菱形,據(jù)此即可列方程求得t的值;(3)分兩種情況討論即可求解.
【考點精析】關于本題考查的菱形的性質和解直角三角形,需要了解菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC=5cm,BP、CP分別是∠ABC和∠ACB的角平分線,且PD∥AB,PE∥AC,則△PDE的周長是cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=﹣x2+bx+c經(jīng)過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,已知E為BC的中點,連接AE并延長交DC的延長線于點F,連接BF.
(1)求證:AB=CF;
(2)當BC與AF滿足什么數(shù)量關系時,四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O是彈力墻MN上一點,魔法棒從OM的位置開始繞點O向ON的位置順時針旋轉,當轉到ON位置時,則從ON位置彈回,繼續(xù)向OM位置旋轉;當轉到OM位置時,再從OM的位置彈回,繼續(xù)轉向ON位置,…,如此反復.按照這種方式將魔法棒進行如下步驟的旋轉:第1步,從OA0(OA0在OM上)開始旋轉α至OA1;第2步,從OA1開始繼續(xù)旋轉2α至OA2;第3步,從OA2開始繼續(xù)旋轉3α至OA3 , ….
例如:當α=30°時,OA1 , OA2 , OA3 , OA4的位置如圖2所示,其中OA3恰好落在ON上,∠A3OA4=120°;
當α=20°時,OA1 , OA2 , OA3 , OA4 , OA3的位置如圖3所示,
其中第4步旋轉到ON后彈回,即∠A3ON+∠NOA4=80°,而OA3恰好與OA2重合.
解決如下問題:
(1)若α=35°,在圖4中借助量角器畫出OA2 , OA3 , 其中∠A3OA2的度數(shù)是;
(2)若α<30°,且OA4所在的射線平分∠A2OA3 , 在如圖5中畫出OA1 , OA2 , OA3 , OA4并求出α的值;
(3)若α<36°,且∠A2OA4=20°,則對應的α值是
(4)(選做題)當OAi所在的射線是∠AiOAk(i,j,k是正整數(shù),且OAj與OAk不重合)的平分線時,旋轉停止,請?zhí)骄浚涸噯枌τ谌我饨铅粒é恋亩葦?shù)為正整數(shù),且α=180°),旋轉是否可以停止?寫出你的探究思路.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com