【題目】已知二次函數(shù) ( 是常數(shù)).
(1)求證:不論 為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn);
(2)把該函數(shù)的圖象沿 軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與 軸只有一個(gè)公共點(diǎn)?
【答案】
(1)解:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0
∴方程x2﹣2mx+m2+3=0沒有實(shí)數(shù)解, 即不論m為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn);
(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,
∴把函數(shù)y=x2﹣2mx+m2+3的圖象沿y軸向下平移3個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn).
【解析】(1)根據(jù)△=b2-4ac>0方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根,△=0,方程有兩個(gè)相等的實(shí)數(shù)根,△<0,方程沒有實(shí)數(shù)根;由△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,得到方程x2﹣2mx+m2+3=0沒有實(shí)數(shù)解, 即不論m為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn);(2)根據(jù)頂點(diǎn)式得到把函數(shù)的圖象沿y軸向下平移3個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AD是∠BAC的角平分線,AE是△ABC的高.
(1)如圖1,若∠B=40°,∠C=62°,請(qǐng)說明∠DAE的度數(shù);
(2)如圖2(∠B<∠C),試說明∠DAE、∠B、∠C的數(shù)量關(guān)系;
(3)如圖3,延長(zhǎng)AC到點(diǎn)F,∠CAE和∠BCF的角平分線交于點(diǎn)G,求∠G的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:數(shù)學(xué)活動(dòng)課上,樂老師給出如下定義:有一組對(duì)邊相等而另一組對(duì)邊不相等的凸四邊形叫做對(duì)等四邊形.
理解:
(1)如圖1,已知A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)?jiān)诜礁駡D中畫出以格點(diǎn)為頂點(diǎn),AB、BC為邊的兩個(gè)對(duì)等四邊形ABCD;
(2)如圖2,在圓內(nèi)接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對(duì)等四邊形;
(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC= ,點(diǎn)A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點(diǎn)D,使四邊形ABCD為對(duì)等四邊形,并求出CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
實(shí)際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項(xiàng)式的乘法中,可以用平方差公式計(jì)算的有( )
A.(x+)(﹣x﹣)B.(﹣2+m)(﹣m﹣2)
C.(﹣a+b)(a﹣b)D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.
求證:
(1)D是BC的中點(diǎn);
(2)△BEC∽△ADC;
(3)若 ,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索發(fā)現(xiàn):如圖是一種網(wǎng)紅彈弓的實(shí)物圖,在兩頭上系上皮筋,拉動(dòng)皮筋可形成平面示意圖如圖1圖2,彈弓的兩邊可看成是平行的,即AB∥CD.各活動(dòng)小組探索∠APC 與∠A,∠C之間的數(shù)量關(guān)系.已知AB∥CD,點(diǎn)P不在直線AB和直線CD上,在圖1中,智慧小組發(fā)現(xiàn):∠APC=∠A+∠C.
智慧小組是這樣思考的:過點(diǎn) P 作 PQ∥AB,……
(1)請(qǐng)你按照智慧小組作的輔助線完成證明過程.
(2)①在圖2中,猜測(cè)∠APC與∠A,∠C 之間的數(shù)量關(guān)系,并完成證明.
②如圖3,已知AB∥CD,則角α、β、γ之間的數(shù)量關(guān)系為 .(直接填空)
(3)善思小組提出:如圖4,圖5.AB∥CD,AF,CF分別平分∠BAP,∠DCP
①在圖4中,猜測(cè)∠AFC與∠APC之間的數(shù)量關(guān)系,并證明.
②在圖5中,∠AFC與∠APC之間的數(shù)量關(guān)系為 .(直接填空)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表給出了某班6名同學(xué)身高情況(單位:cm).
(1)完成表中空的部分;
(2)他們的最高與最矮相差多少?
(3)他們的平均身高是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y1=-x+m與y軸交于點(diǎn)A(0,6),直線l2:y2=kx+1分別與x軸交于點(diǎn)B(-2,0),與y軸交于點(diǎn)C,兩條直線l1、l2相交于點(diǎn)D,連接AB.
(1)求兩直線l1、l2交點(diǎn)D的坐標(biāo);
(2)求△ABD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com