如圖,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求證:△ABD∽△CBE.

證明見解析.

解析試題分析:根據(jù)等腰三角形三線合一的性質(zhì)可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根據(jù)兩組角對應(yīng)相等的兩個三角形相似證明.
試題解析:在中,,,
,

,
又∵

考點: 相似三角形的判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線AC、BD相交于點E。且AC⊥BD。(1)求證:CD²=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角梯形OABC中,OA∥BC,A、B兩點的坐標(biāo)分別為A(13,0),B(11,12),動點P,Q分別從O、B兩點同時出發(fā),點P以每秒2個單位的速度沿OA向終點A運動,點Q以每秒1個單位的速度沿BC向C運動,當(dāng)點P停止運動時,點Q同時停止運動.線段OB、PQ相交于點D,過點D作DE∥OA,交AB于點E,設(shè)動點P、Q運動時間為t(單位:s)

(1)當(dāng)t為何值時,四邊形PABQ是平行四邊形,請寫出推理過程;
(2)通過推理論證:在P、Q的運動過程中,線段DE的長度不變;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,已知線段AB=8,以AB為直徑作半圓O,再以O(shè)A為直徑作半圓C,P是半圓C上的一個動點(P與點A,O不重合),AP的延長線交半圓O于點D。

(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接PC,當(dāng)∠ACP=600時,求弧AD的長;
(3)過點D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點,DE與CF交于點G.(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則       (填“<”或“=”或“>”);
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:
當(dāng)∠B與∠EGC滿足什么關(guān)系時,使得=成立?并證明你的結(jié)論;
(3)如圖3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.則的值為        

圖1                     圖2                     圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC是邊長為6cm的等邊三角形,動點P,Q同時從A、B兩點出發(fā),分別沿AB,BC方向勻速運動,其中點P運動的速度是1cm/s,點Q運動的速度是2cm/s,當(dāng)點Q到達點C時,P、Q兩點都停止運動,設(shè)運動時間為t(s),

解答下列問題:
(1)當(dāng)為何值時,△BPQ為直角三角形;
(2)設(shè)△BPQ的面積為S(cm2),求S與的函數(shù)關(guān)系式;
(3)作QR∥BA交AC于點R,連結(jié)PR,當(dāng)為何值時,△APR∽△PRQ ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點,連接AE、AC.

求證:(1)點F是DC上一點,連接EF,交AC于點O(如圖1),△AOE∽△COF;
(2)若點F是DC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,∴P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長BP交邊AD于點F,交CD的延長線于點G.

(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設(shè)線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x=6時,求線段FG的長.

查看答案和解析>>

同步練習(xí)冊答案