【題目】如圖,在邊長(zhǎng)為2的菱形中,,點(diǎn)為射線上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作交射線于點(diǎn).將沿直線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接,.若為直角三角形時(shí),的長(zhǎng)為__________.
【答案】或
【解析】
如圖1,當(dāng)∠CDF=90°時(shí),根據(jù)菱形的性質(zhì)得到∠AFD=∠CDF=90°,求得AF=1,由折疊的性質(zhì)可得AP=AF=;如圖2,當(dāng)∠DCF=90°,根據(jù)平行線的性質(zhì)得到∠CBF=∠A=60°,根據(jù)直角三角形的性質(zhì)求出BF=BC=1,可得AF=3,由折疊的性質(zhì)得到AP=AF=.
解:如圖1,當(dāng)∠CDF=90°時(shí),
∵在菱形ABCD中,AB=CD=AD=2,CD∥AB,
∴∠AFD=∠CDF=90°,
∵∠A=60°,
∴AF=AD=1,
由折疊的性質(zhì)可得:AP=AF=;
如圖2,當(dāng)∠DCF=90°,則∠AFC=90°,
∵AD∥BC,
∴∠CBF=∠A=60°,
∵BC=2,
∴BF=BC=1,
∴AF=3,
由折疊的性質(zhì)可得:AP=AF=,
綜上所述:當(dāng)△FDC為直角三角形時(shí),AP的長(zhǎng)為或.
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是邊長(zhǎng)為的等邊三角形,動(dòng)點(diǎn),同時(shí)從,兩點(diǎn)出發(fā),分別沿,勻速運(yùn)動(dòng),其中點(diǎn)運(yùn)動(dòng)的速度是,點(diǎn)運(yùn)動(dòng)的速度是,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),,兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,解答下列問(wèn)題:
(1)如圖①,當(dāng)為何值時(shí),;
(2)如圖②,當(dāng)為何值時(shí),為直角三角形;
(3)如圖③,作交于點(diǎn),連接,當(dāng)為何值時(shí),與相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有若干間標(biāo)準(zhǔn)房,當(dāng)標(biāo)準(zhǔn)房的價(jià)格為元時(shí),每天入住的國(guó)間數(shù)為間,經(jīng)市場(chǎng)調(diào)查表明,該賓館每間標(biāo)準(zhǔn)房的價(jià)格在元之間(含元,元)浮動(dòng)時(shí),每天人住的房間數(shù)(間)與每間標(biāo)準(zhǔn)房的價(jià)格(元)的數(shù)據(jù)如下表:
(元) | …… | 190 | 200 | 210 | 220 | …… |
(元) | …… | 65 | 60 | 55 | 50 | …… |
(1)根據(jù)所給數(shù)據(jù)在坐標(biāo)系中描出相應(yīng)的點(diǎn),并畫(huà)出圖象.
(2)猜想(1)中的圖象是什么函數(shù)的圖象,求關(guān)于的函數(shù)表達(dá)式,并寫(xiě)出自變量的取值范圍.
(3)設(shè)客房的日營(yíng)業(yè)額為W (元).若不考慮其他因素,問(wèn)賓館標(biāo)準(zhǔn)房的價(jià)格定為多少元時(shí),客房的日營(yíng)業(yè)額最大?最大為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過(guò)A(﹣3,0)、B(1,0)兩點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合).
(1)求拋物線的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如圖1,過(guò)點(diǎn)P作PE⊥y軸于點(diǎn)E.求△PAE面積S的最大值;
(3)如圖2,拋物線上是否存在一點(diǎn)Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長(zhǎng)為13.3米,從D、E兩處測(cè)得路燈A的仰角分別為α和45°,且tanα=6.求燈桿AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,內(nèi)接于以為直徑的中,且點(diǎn)是的內(nèi)心,的延長(zhǎng)線與交于點(diǎn),與交于點(diǎn),的切線交的延長(zhǎng)線于點(diǎn).
(1)試判斷的形狀,并給予證明;
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“安全教育”是學(xué)校必須開(kāi)展的一項(xiàng)重要工作.某校為了了解家長(zhǎng)和學(xué)生參與“暑期安全知識(shí)學(xué)習(xí)”的情況,進(jìn)行了網(wǎng)上測(cè)試,并在本校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查.若把參與測(cè)試的情況分為類(lèi)情形:.僅學(xué)生自己參與;.家長(zhǎng)和學(xué)生一起參與;.僅家長(zhǎng)自己參與;.家長(zhǎng)和學(xué)生都未參與.根據(jù)調(diào)查情況,繪制了以下不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
在這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中類(lèi)所對(duì)應(yīng)扇形的圓心角的度數(shù);
根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,于點(diǎn)E,于點(diǎn)D,BE與AD相交于F.
求證:;
若,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查市市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車(chē),B:電動(dòng)車(chē),C:公交車(chē),D:家庭汽車(chē),E:其他”五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)在這次調(diào)查中,一共調(diào)查了 名市民,扇形統(tǒng)計(jì)圖中,C組對(duì)應(yīng)的扇形圓心角是 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若甲、乙兩人上班時(shí)從A,B,C三種交通工具中隨機(jī)選擇一種,乙上班時(shí)從B、C、D三種交通工具中隨機(jī)選擇一種,請(qǐng)用樹(shù)狀圖法或列表法求甲、乙兩人都不選B種交通工具上班的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com