【題目】如圖,在中,,.點是線段上的一點,連結,過點作,分別交、于點、,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②若點是的中點,則;③當、、、四點在同一個圓上時,;④若,則.其中正確的結論序號是( )
A. ①②B. ①②③C. ③④D. ①②③④
【答案】B
【解析】
(1)由△AFG∽△BFC,可確定結論①正確;
(2)先證明△ABG≌△BCD(ASA),得到AG=BD,再通過點是的中點,利用(1)中得到的,得到,在Rt△ABC中,可得AC=AB,即可得到AF=AB,故結論②正確;
(3)當B、C、F、D四點在同一個圓上時,由圓內接四邊形的性質得到∠2=∠ACB由于∠ABC=90°,AB=BC,得到∠ACB=∠CAB=45°,于是得到∠CFD=∠AFD=90°,根據(jù)垂徑定理得到DF=DB,故③正確;
(4)因為=,所以AF=AC ,,所以S△ABF=S△ABC,又S△BDF=S△ABF,所以S△ABC=12S△BDF,由此確定結論④錯誤.
解:
(1)∵,
∴BC∥AG,
∴∠G=∠FBC
∠GAF=∠FCB
∴△AFG∽△BFC,
∴,
又AB=BC,
∴.
故結論①正確;
(2)如圖,∵∠1+∠3=90°,∠1+∠4=90°,
∴∠3=∠4.
在△ABG與△BCD中,
∴△ABG≌△BCD(ASA),
∴AG=BD,
∵點是的中點,
∴AG=BD=AB=BC
∴
∴
∵在Rt△ABC中,AB=BC
∴AC=AB
∴AF=AB
故結論②正確;
(3)當B、C、F、D四點在同一個圓上時,
∴∠2=∠ACB,
∵∠ABC=90°,AB=BC,
∴∠ACB=∠CAB=45°,
∴∠2=45°,
∴∠CFD=∠AFD=90°,
∴CD是B、C、F、D四點所在圓的直徑,
∵BG⊥CD,
∴DF與BD對應的弧相等,
∴DF=DB,故③正確;
(4)∵,AG=BD,,
∴,
∴
∴AF=AC,
∴S△ABF=S△ABC,
∴S△BDF=S△ABF,
∴S△BDF=S△ABC,即S△ABC=12S△BDF.
故結論④錯誤;
正確的是①②③,故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形中,∥,,直線.當直線沿射線方向,從點開始向右平移時,直線與四邊形的邊分別相交于點、.設直線向右平移的距離為,線段的長為,且與的函數(shù)關系如圖2所示,則四邊形的周長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線經過點(2,3),對稱軸為直線x =1.
(1)求拋物線的表達式;
(2)如果垂直于y軸的直線l與拋物線交于兩點A(, ),B(, ),其中, ,與y軸交于點C,求BCAC的值;
(3)將拋物線向上或向下平移,使新拋物線的頂點落在x軸上,原拋物線上一點P平移后對應點為點Q,如果OP=OQ,直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個兒童游樂場所,由于周末小朋友較多,老板計劃將場地擴建,擴建前平面圖為△ABC,BC=10米,∠ABC=∠ACB=36°,擴建后頂點D在BA的延長線上,且∠BDC=90°,求擴建后AB邊增加部分AD的長.(結果精確到0.1米.參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】企業(yè)舉行“愛心一日捐”活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結合圖表中的信息解答下列問題:
(1)宣傳小組抽取的捐款人數(shù)為 人,請補全條形統(tǒng)計圖;
(2)統(tǒng)計的捐款金額的中位數(shù)是 元;
(3)在扇形統(tǒng)計圖中,求100元所對應扇形的圓心角的度數(shù);
(4)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB是O的直徑,點C在O上,且點C為弧BE的中點,連接AE并延長交BC延長線于點D.
(1)判斷△ABD的形狀,并說明理由;
(2)過點C作CM⊥AD,垂足為點F,如圖2.求證:CF是O的切線;
(3)若O的半徑為3,DF=1,求sinB的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù)y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經過點B的反比例函數(shù)圖象的表達式為( 。
A. y=﹣ B. y= C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】傳統(tǒng)節(jié)日“端午節(jié)”的早晨,小文媽媽為小文準備了四個粽子作早點:一個棗餡粽,一個肉餡粽,兩個花生餡粽,四個粽子除內部餡料不同外,其它一切均相同.
(1)小文吃前兩個粽子剛好都是花生餡粽的概率為 ;
(2)若媽媽在早點中給小文再增加一個花生餡的粽子,則小文吃前兩個粽子都是花生餡粽的可能性是否會增大?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com