如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
【答案】分析:(1)根據(jù)A、B、C的坐標(biāo)即可用待定系數(shù)法求出拋物線的解析式,進(jìn)而可用配方法求出其頂點(diǎn)坐標(biāo);
(2)連接EM,過D作DF⊥x軸于F;由于ED、EA都是⊙O的切線,根據(jù)切線長定理可得EA=ED,易證得△EAM≌△EDM則它們的面積相等,由此可得到S△EAM=2,即可求出EA的長,也就得到了E點(diǎn)的坐標(biāo);在Rt△EAM中,根據(jù)EA、AM的值,即可求出∠EMA的度數(shù),進(jìn)而可求出∠DMF的度數(shù),從而在Rt△DMF中,通過解直角三角形求出MF、DF的長,由此求得D點(diǎn)坐標(biāo),用待定系數(shù)法即可求出直線DP的解析式;(需注意的是AE的長為正值,但是E點(diǎn)的縱坐標(biāo)有正負(fù)兩種情況,所以要分類討論)
(3)在△DAN中,由于DN是⊙M的直徑,所以DM=MN,則△DAM和△MAN等底同高,所以面積相等,即△DAN的面積是△DAM的2倍;在(2)題中已經(jīng)求出四邊形EAMD的面積是△EAM的2倍,若四邊形EAMD的面積等于△DAN的面積,則△DAM、△EAM的面積相等,這兩個(gè)三角形共用底邊AM,所以它們的高相同,由此可證得PD與x軸平行,即PD的解析式為y=±2,聯(lián)立拋物線的解析式即可求出P點(diǎn)的坐標(biāo).
解答:解:(1)因?yàn)閽佄锞與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),
設(shè)拋物線的函數(shù)關(guān)系式為:y=a(x+1)(x-3),
∵拋物線與y軸交于點(diǎn)C(0,-3),
∴-3=a(0+1)(0-3),
∴a=1,
所以,拋物線的函數(shù)關(guān)系式為:y=x2-2x-3,(2分)
又∵y=(x-1)2-4,
因此,拋物線的頂點(diǎn)坐標(biāo)為(1,-4);(3分)

(2)連接EM,∵EA、ED是⊙M的兩條切線,
∴EA=ED,EA⊥AM,ED⊥MD,
∴△EAM≌△EDM(HL),
又∵四邊形EAMD的面積為,
∴S△EAM=2
AM•AE=2,
又∵AM=2,
∴AE=2
因此,點(diǎn)E的坐標(biāo)為E1(-1,2)或E2(-1,-2),(5分)
當(dāng)E點(diǎn)在第二象限時(shí),切點(diǎn)D在第一象限,
在直角三角形EAM中,tan∠EMA===,
∴∠EMA=60°,
∴∠DMB=60°,
過切點(diǎn)D作DF⊥AB,垂足為點(diǎn)F,
∴MF=1,DF=,
因此,切點(diǎn)D的坐標(biāo)為(2,),(6分)
設(shè)直線PD的函數(shù)關(guān)系式為y=kx+b,
將E(-1,2),D(2,)的坐標(biāo)代入得
解之,得:,
所以,直線PD的函數(shù)關(guān)系式為,(7分)
當(dāng)E點(diǎn)在第三象限時(shí),切點(diǎn)D在第四象限,
同理可求:切點(diǎn)D坐標(biāo)為(2,-),
直線PD的函數(shù)關(guān)系式為,
因此,直線PD的函數(shù)關(guān)系式為;(8分)

(3)若四邊形EAMD的面積等于△DAN的面積,
又∵S四邊形EAMD=2S△EAM,S△DAN=2S△AMD
∴S△AMD=S△EAM,
∴E、D兩點(diǎn)到x軸的距離相等,
∵PD與⊙M相切,
∴點(diǎn)D與點(diǎn)E在x軸同側(cè),
∴切線PD與x軸平行,
此時(shí)切線PD的函數(shù)關(guān)系式為y=2或y=-2,(9分)
當(dāng)y=2時(shí),由y=x2-2x-3得,x=1±;
當(dāng)y=-2時(shí),由y=x2-2x-3得,x=1±,(11分)
故滿足條件的點(diǎn)P的位置有4個(gè),分別是P1(1+,2)、P2(1-,2)、P3(1+,-2)、P4(1-,-2).(12分)
說明:本參考答案給出了一種解題方法,其它正確方法應(yīng)參考本標(biāo)準(zhǔn)給出相應(yīng)分?jǐn)?shù).
點(diǎn)評:此題主要考查了二次函數(shù)解析式的確定、切線的性質(zhì)、切線長定理、全等三角形的判定和性質(zhì)、圖形面積的求法等重要知識(shí),同時(shí)還考查了分類討論的數(shù)學(xué)思想,綜合性強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•思明區(qū)質(zhì)檢)已知二次函數(shù)y=ax2+bx+c(a<0)的部分圖象如圖所示,拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),對稱軸為直線x=1.
(1)若a=-1,求c-b的值;
(2)若實(shí)數(shù)m≠1,比較a+b與m(am+b)的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(29):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(27):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案