【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC,△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)直接寫出AB與AP所滿足的數量關系:_____,AB與AP的位置關系:_____;
(2)將△ABC沿直線l向右平移到圖2的位置時,EP交AC于點Q,連接AP,BQ,求證:AP=BQ;
(3)將△ABC沿直線l向右平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ,試探究AP=BQ是否仍成立?并說明理由.
【答案】(1)AB=AP,AB⊥AP;(2)證明見解析;(3)成立,理由見解析.
【解析】試題分析:(1)AB=AP,AB⊥AP,已知AC⊥BC且AC=BC,可得△ABC為等腰直角三角形,所以∠BAC=∠ABC=45°,根據已知條件易證∠PEF=45°,即可得∠BAP=90°,結論得證;(2)根據已知條件易證Rt△BCQ≌Rt△ACP,根據全等三角形的性質即可得結論;(3)結論仍成立,類比(2)方法證明即可.
試題解析:
(1)AB=AP;AB⊥AP;
證明:∵AC⊥BC且AC=BC,
∴△ABC為等腰直角三角形,
∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,
易知,△ABC≌△EFP,
同理可證∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
故答案為:AB=AP AB⊥AP
(2)證明:
∵EF=FP,EF⊥FP
∴∠EPF=45°.
∵AC⊥BC,
∴∠CQP=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.
(3)AP=BQ成立,理由如下:
∵EF=FP,EF⊥FP,
∴∠EPF=45°.
∵AC⊥BC
∴∠CPQ=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.
科目:初中數學 來源: 題型:
【題目】我國曾五次實施藥品降價,累計降價的總金額為269億元,五次藥品降價的年份與相應降價金額如下表所示,表中缺失了2003年、2007年相關數據。已知2007年藥品降價金額是2003年藥品降價金額的6倍,結合表中信息,求2003年和2007年的藥品降價金額。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC中,AD平分∠BAC,EM是AD的中垂線,交BC延長線于E.
(1)連接AE,證明:∠EAC=∠B.
(2)求證:DE2=BECE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將連續(xù)的奇數1,3,5,7,9,……,排成如圖所示的數陣.
(1)十字框中五個數的和與中間數15有什么關系?
(2)設中間數為a,用式子表示十字框中五個數的和;
(3)若將十字框上下左右移動,可框住另外五個數,這五個數的和還有種規(guī)律嗎?
(4)十字框中五個數之和能等于2010嗎?若能,請寫出這五個數;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點O在直線AB上,點A1,A2,A3,……在射線OA上,點B1, B2,B3,……在射線OB上,圖中的每一個實線段和虛線段的長均為1個單位長度.一個動點M從O點出發(fā),以每秒1個單位長度
的速度按如圖所示的箭頭方向沿著實線段和以點O為圓心的半圓勻速運動,即從OA1B1B2A2……按此規(guī)律,則動點M到達A10點處所需時間為 __________秒.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一組數據x1,x2,x3,x4,x5的平均數是2,方差是,那么另一組數據3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數和方差分別是( 。
A. 2, B. 4,3 C. 4, D. 2,1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次中學生田徑運動會上,根據參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據相關信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計的這組初賽成績數據的平均數、眾數和中位數;
(Ⅲ)根據這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復賽.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在你標有刻度的直線l上,從點A開始,以AB=1為直徑畫半圓,記為第1個半圓;以BC=2為直徑畫半圓,記為第2個半圓;以CD=4為直徑畫半圓,記為第3個半圓;以DE=8為直徑畫半圓,記為第4個半圓…,按此規(guī)律,則第4個半圓的面積是第3個半圓面積的倍,第n個半圓的面積為 . (結果保留π)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com