【題目】如圖,點E是矩形ABCD的邊CD上一點,把△ADE沿AE對折,使點D恰好落在BC邊上的F點處.已知折痕AE=10,且CE:CF=4:3,那么該矩形的周長為( )
A.48B.64C.92D.96
【答案】D
【解析】
由CE:CF=4:3,可以假設(shè)CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性質(zhì)求出BF,再在Rt△ADE中,利用勾股定理構(gòu)建方程即可解決問題.
∵四邊形ABCD是矩形,
∴AB=CD,AD=BC,∠B=∠C=∠D=90°,
∵CE:CF=4:3,
∴可以假設(shè)CE=4k,CF=3k
∴EF=DE=5k,AB=CD=9k,
∵∠AFE=∠D=90°,
∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,
∴∠AFB=∠CEF,
∴△ABF∽△FCE,
∴,
∴,
∴BF=12k,
∴AD=BC=15k,
在Rt△AED中,∵AE2=AD2+DE2,
∴1000=225k2+25k2,
∴k=2或-2(舍棄),
∴矩形的周長=48k=96,
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=4,E是AC的中點,D是直線BC上一動點,線段ED繞點E逆時針旋轉(zhuǎn)90°,得到線段EF,當(dāng)點D運動時,則AF的最小值為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為非負(fù)整數(shù),且該方程的根都是無理數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E,F分別在邊AD,CD上,若∠EBF=45°,則△EDF的周長等于( 。
A.2B.3C.4D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①當(dāng)∠DAE= 時,四邊形ADFP是菱形;
②當(dāng)∠DAE= 時,四邊形BFDP是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某“興趣小組”根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=x+的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整
(1)函數(shù)y=x+的自變量取值范圍是 .
(2)下表是x與y的幾組對應(yīng)值
則表中m的值為 .
(3)根據(jù)表中數(shù)據(jù),在如圖所示平面直角坐標(biāo)xOy中描點,并畫出函數(shù)的一部分,請畫出該函數(shù)的圖象的另一部分,
(4)觀察函數(shù)圖象:寫出該函數(shù)的一條性質(zhì): .
(5)進一步探究發(fā)現(xiàn):函數(shù)y=x+圖象與直線y=﹣2只有一交點,所以方程x+=﹣2只有1個實數(shù)根,若方程x+=k(x<0)有兩個不相等的實數(shù)根,則k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.若船A、船B分別以20海里/時、15海里/時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80, tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標(biāo)分別是A(3,2)、B(1,3).△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1.(直接填寫答案)
(1)點A關(guān)于點O中心對稱的點的坐標(biāo)為 ;
(2)點A1的坐標(biāo)為 ;
(3)在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑為弧BB1,那么弧BB1的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com