sin30°的值為     

試題分析:根據(jù)特殊角的三角函數(shù)值計算即可:sin30°=!
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

問題背景: 如圖(a),點A、B在直線l的同側(cè),要在直線l上找一點C,使AC與BC的距離之和最小,我們可以作出點B關(guān)于l的對稱點B′,連接AB′與直線l交于點C,則點C即為所求.

實踐運用: 如圖(b),已知,⊙O的直徑CD為4,點A 在⊙O 上,∠ACD = 30°,B 為弧AD 的中點,P為直徑CD上一動點,求:PA+ PB的最小值,并寫出解答過程.

知識拓展:如圖(c),在菱形ABCD中,AB = 10,∠DAB= 60°,P是對角線AC上一動點,E、F分別是線段AB和BC上的動點,則PE +PF的最小值是     .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,直角三角形紙片的兩直角邊長分別為6,8,現(xiàn)將如圖那樣折疊,使點與點重合,折痕為,則的值是________

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角坐標系中,P是第一象限內(nèi)的點,其坐標是(3,m),且OP與x軸正半軸的夾角的正切值是,則的值是【   】
A. B.  C. D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在⊙O中,半徑OC垂直于弦AB,垂足為點E.

(1)若OC=5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且點D在⊙O的外部,判斷直線AD與⊙O的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,甲乙兩幢樓之間的距離是30米,自甲樓頂A處測得乙樓頂端C處的仰角為,測得乙樓底部D處的俯角為,則乙樓的高度為       米.
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一根長米的木棒(AB),斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°.當木棒A端沿墻下滑至點A′時,B端沿地面向右滑行至點B′.

(1)求OB的長;
(2)當AA′=1米時,求BB′的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川眉山8分)如圖,某防洪指揮部發(fā)現(xiàn)長江邊一處長500米,高10米,背水坡的坡角為45°的防洪大堤(橫斷面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進行加固,并使上底加寬3米,加固后背水坡EF的坡比i=1:

(1)求加固后壩底增加的寬度AF;
(2)求完成這項工程需要土石多少立方米?(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案