下列圖形中對(duì)稱軸條數(shù)最多的是(   )
A.線段B.圓C.正方形D.等邊三角形
B
解:線段有2條對(duì)稱軸,圓有無(wú)數(shù)條對(duì)稱軸,正方形有4條對(duì)稱軸,等邊三角形有3條對(duì)稱軸,對(duì)稱軸條數(shù)最多的是圓,故選B。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1.

(1)平移已知直角三角形,使直角頂點(diǎn)與點(diǎn)重合,畫(huà)出平移后的三角形.
(2)將平移后的三角形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),畫(huà)出旋轉(zhuǎn)后的圖形.
(3)在方格紙中任作一條直線作為對(duì)稱軸,畫(huà)出(1)和(2)所畫(huà)圖形的軸對(duì)稱圖形,得到一個(gè)美麗的圖案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,點(diǎn)(a,5)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(1,b+1),則點(diǎn)(a,b)是       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<180°),得到△A′B′C.
(1)如圖(1),當(dāng)AB∥CB′時(shí),設(shè)A′B′與CB相交于點(diǎn)D.證明:△A′CD是等邊三角形;             
(2)如圖(2),設(shè)AC中點(diǎn)為E,A′B′中點(diǎn)為P,AC=,連接EP, 當(dāng)=        °時(shí),EP長(zhǎng)度最大,最大值為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知△ABC中,AB=BC=1,∠ABC=90°,把一塊含30°角的△DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),將直角三角板DEF繞D點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)。
⑴在圖1中,DE交AB于M,DF交BC于N。①說(shuō)明DM=DN;②在這一過(guò)程中,直角三角板DEF與△ABC的重疊部分為四邊形DMBN,請(qǐng)說(shuō)明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明是如何變化的?若不發(fā)生變化,求出其面積;
⑵繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長(zhǎng)AB交DE于M,延長(zhǎng)BC交DF于N,DM=DN是否仍然成立?若成立,請(qǐng)給出理由;若不成立,請(qǐng)說(shuō)明理由;
⑶繼續(xù)旋轉(zhuǎn)至如圖3的位置,延長(zhǎng)FD交BC于N,延長(zhǎng)ED交AB于M,DM=DN是否仍然成立?若成立,請(qǐng)給出結(jié)論,不用說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形OABC中,點(diǎn)B的坐標(biāo)為(-2,3)。畫(huà)出矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的矩形OA1B1C1,并直接寫(xiě)出的坐標(biāo)A1、B1、C1的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一串有趣的圖案按一定的規(guī)律排列(如圖):

按此規(guī)律畫(huà)出的第2011個(gè)圖案是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,將兩塊全等的直角三角板拼接在一起.這個(gè)圖形可以看作是由一塊直角三角板繞著直角頂點(diǎn)經(jīng)過(guò)一次旋轉(zhuǎn)后得到的,那么旋轉(zhuǎn)的角度是(     ).
A.30°B.60°C.90°D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,△ABC是等邊三角形,P是三角形外的一點(diǎn),且∠ABP+∠ACP=180°.
求證:AP平分∠BPC.

查看答案和解析>>

同步練習(xí)冊(cè)答案