某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì)),這些薄板的形狀均為正方形,邊長(zhǎng)在(單位:cm)在5~50之間.每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)有基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與薄板的大小無(wú)關(guān),是固定不變的.浮動(dòng)價(jià)與薄板的邊長(zhǎng)成正比例.在營(yíng)銷(xiāo)過(guò)程中得到了表格中的數(shù)據(jù).
薄板的邊長(zhǎng)(cm)2030
出廠價(jià)(元/張)5070
(1)求一張薄板的出廠價(jià)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;
(2)已知出廠一張邊長(zhǎng)為40cm的薄板,獲得的利潤(rùn)為26元(利潤(rùn)=出廠價(jià)-成本價(jià)),
①求一張薄板的利潤(rùn)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式.
②當(dāng)邊長(zhǎng)為多少時(shí),出廠一張薄板所獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
參考公式:拋物線:y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
(1)設(shè)一張薄板的邊長(zhǎng)為xcm,它的出廠價(jià)為y元,基礎(chǔ)價(jià)為n元,浮動(dòng)價(jià)為kx元,則y=kx+n.
由表格中的數(shù)據(jù),得
50=20k+n
70=30k+n
,
解得
k=2
n=10
,
所以y=2x+10;

(2)①設(shè)一張薄板的利潤(rùn)為p元,它的成本價(jià)為mx2元,由題意,得:
p=y-mx2=2x+10-mx2
將x=40,p=26代入p=2x+10-mx2中,
得26=2×40+10-m×402
解得m=
1
25

所以p=-
1
25
x2+2x+10.
②因?yàn)閍=-
1
25
<0,所以,當(dāng)x=-
b
2a
=-
2
2×(-
1
25
)
=25(在5~50之間)時(shí),
p最大值=
4ac-b2
4a
=
4×(-
1
25
)×10-22
4×(-
1
25
)
=35.
即出廠一張邊長(zhǎng)為25cm的薄板,獲得的利潤(rùn)最大,最大利潤(rùn)是35元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2-2x+a(a>0)與y軸相交于點(diǎn)A,頂點(diǎn)為M.直線y=
1
2
x+
1
2
a
與x軸相交于B點(diǎn),與直線AM相交于N點(diǎn);直線AM與x軸相交于C點(diǎn)
(1)求M的坐標(biāo)與MA的解析式(用字母a表示);
(2)如圖,將△NBC沿x軸翻折,若N點(diǎn)的對(duì)應(yīng)點(diǎn)N′恰好落在拋物線上,求a的值;
(3)在拋物線y=-x2-2x+a(a>0)上是否存在一點(diǎn)P,使得以P、B、C、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在平面直角坐標(biāo)系中,拋物線y=-
1
4
x2+bx+3
交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱(chēng)軸為x=-2,點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.
(3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠PDA=90°時(shí),Rt△ADP與Rt△AOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一家電腦公司推出一款新型電腦,投放市場(chǎng)以來(lái),前兩個(gè)月的利潤(rùn)情況如圖所示,該圖可以近似地看作拋物線的一部分,其中第x月的利潤(rùn)為y萬(wàn)元,往后y與x滿足的關(guān)系不變.請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)該公司在經(jīng)營(yíng)此款電腦的過(guò)程中,第幾月的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)公司打算,從月利潤(rùn)下降開(kāi)始,每月對(duì)下月的銷(xiāo)售額進(jìn)行預(yù)測(cè),若下月與該月的利潤(rùn)差額超過(guò)10萬(wàn)元,則下月就停止銷(xiāo)售該產(chǎn)品,請(qǐng)你預(yù)測(cè)該產(chǎn)品持續(xù)銷(xiāo)售的月數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2+bx+3與x軸交于點(diǎn)B(3,0),與y軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),P是二次函數(shù)y=x2+bx+3的圖象上一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)是m,且m>3,過(guò)點(diǎn)P作PM,PM交直線AB于M.
(1)求二次函數(shù)的解析式;
(2)若以AB為直徑的⊙N恰好與直線PM相切,求此時(shí)點(diǎn)M的坐標(biāo);
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,△APM能否為等腰三角形?若能,求出點(diǎn)P的坐標(biāo);若不能請(qǐng)說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸的一個(gè)交點(diǎn)是A,與y軸的交點(diǎn)是B,且OA、OB(OA<OB)的長(zhǎng)是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求出此拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(3)求出此拋物線與x軸的另一個(gè)交點(diǎn)C的坐標(biāo);
(4)在直線BC上是否存在一點(diǎn)P,使四邊形PDCO為梯形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某商店從廠家一每件21元的價(jià)格購(gòu)進(jìn)一批商品,該商店可以自行定價(jià).若每件商品售為x元,則可賣(mài)出(350-10x)件商品,那商品所賺錢(qián)y元與售價(jià)x元的函數(shù)關(guān)系為(  )
A.y=-10x2-560x+7350B.y=-10x2+560x-7350
C.y=-10x2+350xD.y=-10x2+350x-7350

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

煙花廠為成都春節(jié)特別設(shè)計(jì)制作一種新型禮炮,這種禮炮的升空高度h(m)與飛行時(shí)間t(s)的關(guān)系式是h=-
3
2
t2+12t+30
,若這種禮炮在點(diǎn)火升空到最高點(diǎn)引爆,則從點(diǎn)火升空到引爆需要的時(shí)間為( 。
A.3sB.4sC.5sD.6s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正方形的邊長(zhǎng)為x,面積為y
(1)寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)當(dāng)面積為25時(shí),正方形的邊長(zhǎng)是多少?
(3)畫(huà)出此函數(shù)的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案