【題目】如圖,直線向上平移2個單位,得到直線,直線與雙曲線的一個交點的縱坐標為.
(1)求的值;
(2)當時,求的取值范圍;
(3)直線與雙曲線的另一個交點為,求坐標原點到線段的距離.
【答案】(1);;(2)或;(3).
【解析】
(1)根據(jù)平移的原則得出m的值,并計算點A的坐標,因為A在反比例函數(shù)的圖象上,代入可以求k的值;
(2)畫出兩函數(shù)圖象,根據(jù)交點坐標寫出解集;
(3)求得直線與坐標軸的交點坐標,利用面積法即可求解.
(1)∵向上平移2個單位得到:
,
∴,
∵過點,且點的縱坐標為,
∴,
解得:,
∴A的坐標為(1,-2),
把代入,得:;
(2)由直線與雙曲線相交,
得:,
解之得:,,
當時,;
當時,,
所以交點A的坐標為(1,-2),B的坐標為(,3),
結(jié)合圖像可得:當或時直線在雙曲線的下方,
∴當時,求的取值范圍是:或;
(3)直線分別與軸、軸交于點C、D,
當時,;
當時,,
∴,,
∵,
,
∴點到線段的距離:.
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在20天內(nèi)完成,已知每件產(chǎn)品的售價為65元,工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:y=.
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為100件?
(2)設(shè)第x天(0≤x≤20)生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖,工人甲第x天創(chuàng)造的利潤為W元.
①求P與x的函數(shù)關(guān)系式;
②求W與x的函數(shù)關(guān)系式,并求出第幾天時,利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,相交于點O,過點B作交于點F,交于點M,過點D作交于點E,交于點N,連接.則下列結(jié)論:
①;②;
③;④當時,四邊形是菱形.
其中,正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若和均為等腰三角形,且.
(1)如圖(1),點B是的中點,判定四邊形的形狀,并說明理由;
(2)如圖(2),若點G是的中點,連接并延長至點F,使.求證:①,②.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若拋物線與直線圍成的封閉圖形內(nèi)部(不包括邊界)有個整點(橫縱坐標均為整數(shù)),則一次函數(shù)的圖像為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》中記載:“今有上禾三秉,益實六斗,當下禾十秉.下禾五秉,益實一斗,當上禾二秉.問上、下禾實一秉各幾何?”其大意是:今有上等稻子三捆,若打出來的谷子再加六斗,則相當于十捆下等稻子打出來的谷子.有下等稻子五捆,若打出來的谷子再加一斗,則相當于兩捆上等稻子打?qū)鐏淼墓茸?/span>.問上等、下等稻子每捆能打多少斗谷子?設(shè)上等稻子每捆能打x斗谷子,下等稻子每捆能打y斗谷子,根據(jù)題意,可列方程組為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處.柱柱同學操控機器人以每秒個單位長度的速度在圖 1 中給出的線段路徑上運行,柱柱同學將機器人運行時間設(shè)為秒,機器人到點距離設(shè)為,得到函數(shù)圖象如圖 2.通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為;②當時,機器人一定位于點;③機器人一定經(jīng)過點;④機器人一定經(jīng)過點;其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交 AB于點F.
(1)求證:AE為⊙O的切線.
(2)若BC=8,AC=12時,求⊙O的半徑和線段BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com