精英家教網 > 初中數學 > 題目詳情

【題目】RtABC中,∠C90°,AC6BC8,點DE分別是斜邊AB和直角邊BC上的點,把△ABC沿著直線DE折疊,頂點B的對應點是點B′

(1)如圖①,如果點B′和點A重合,求CE的長.

(2)如圖②,如果點B′落在直角邊AC的中點上,求BE的長.

【答案】(1)CE的長為;(2)BE

【解析】

(1)如圖(1),設CEx,則BE8x;根據勾股定理列出關于x的方程,解方程即可解決問題;

(2)如圖(2),首先求出CB′3;類比(1)中的解法,設出未知數,列出方程即可解決問題.

(1)如圖(1),設CEx,則BE8x;

由題意得:AEBE8x

由勾股定理得:x2+62(8x)2

解得:x,

CE的長為:

(2)如圖(2),

∵點B′落在AC的中點,

CB′AC3

CEx,類比(1)中的解法,可列出方程:x2+32(8x)2

解得:x

CE的長為:,

BE

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】因為sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因為sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地當α為銳角時有sin(180°+α)=﹣sinα,由此可知:sin240°=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是由“趙爽弦圖”變化得到的,它由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2S3.若S1+S2+S3=15,則S2的值是(

A. 5B. C. D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】進入夏季用電高峰季節(jié),市供電局維修隊接到緊急通知:要到 30 千米遠的某鄉(xiāng)鎮(zhèn)進行緊急搶修,維修工騎摩托車先走,15 分鐘后,搶修車裝載所需材料出發(fā), 結果兩車同時到達搶修點,已知搶修車的速度是摩托車速度的 1.5 倍,求兩種車的速 度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了更好的治理西流湖水質,保護環(huán)境,市治污公司決定購買 10 臺污水處理設備.現有 A、B 兩種型號的設備,其中每臺的價格,月處理污水量如下表:

A

B

價格(萬元/臺)

a

b

處理污水量(噸/月)

240

200

經調查:購買一臺 A 型設備比購買一臺 B 型設備多 2 萬元,購買 2 A 型設備比購買 3 B 型設備少 6 萬元.

1)求 a,b 的值;

2)經預算:市治污公司購買污水處理設備的資金不超過 105 萬元,你認為該公司 有哪幾種購買方案;

3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.

(1)求甲、乙兩種商品每件的進價分別是多少元?

(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016四川省廣安市)某水果積極計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.

(1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?

(2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結果用m表示)

(3)在(2)問的基礎上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)探索發(fā)現:如圖1,已知RtABC中,∠ACB90°,ACBC,直線l過點C,過點AADl,過點BBEl,垂足分別為D、E.求證:ADCECDBE

2)遷移應用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標系內,三角板的一個銳角的頂點與坐標原點O重合,另兩個頂點均落在第一象限內,已知點M的坐標為(1,3),求點N的坐標.

3)拓展應用:如圖3,在平面直角坐標系內,已知直線y=﹣3x+3y軸交于點P,與x軸交于點Q,將直線PQP點沿逆時針方向旋轉45°后,所得的直線交x軸于點R.求點R的坐標.

查看答案和解析>>

同步練習冊答案