(2013•遂寧)如圖,已知四邊形ABCD是平行四邊形,DE⊥AB,DF⊥BC,垂足分別是E、F,并且DE=DF.求證:
(1)△ADE≌△CDF;
(2)四邊形ABCD是菱形.
分析:(1)首先根據(jù)平行四邊形的性質(zhì)得出∠A=∠C,進(jìn)而利用全等三角形的判定得出即可;
(2)根據(jù)菱形的判定得出即可.
解答:解:(1)∵DE⊥AB,DF⊥BC
∴∠AED=∠CFD=90°,
∵四邊形ABCD是平行四邊形
∴∠A=∠C,
∵在△AED和△CFD中
∠AED=∠CFD
∠A=∠C
DE=DF

∴△AED≌△CFD(AAS);
                         
(2)∵△AED≌△CFD,
∴AD=CD,
∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是菱形.
點(diǎn)評(píng):此題主要考查了菱形的性質(zhì)和全等三角形的判定等知識(shí),根據(jù)已知得出∠A=∠C是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•遂寧)如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于
1
2
MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線(xiàn);②∠ADC=60°;③點(diǎn)D在AB的中垂線(xiàn)上;④S△DAC:S△ABC=1:3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•遂寧)如圖,有一塊含有60°角的直角三角板的兩個(gè)頂點(diǎn)放在矩形的對(duì)邊上.如果∠1=18°,那么∠2的度數(shù)是
12°
12°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•遂寧)如圖,△ABC的三個(gè)頂點(diǎn)都在5×5的網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)的格點(diǎn)上,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到△A′BC′的位置,且點(diǎn)A′、C′仍落在格點(diǎn)上,則圖中陰影部分的面積約是
7.2
7.2
.(π≈3.14,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•遂寧)如圖,在⊙O中,直徑AB⊥CD,垂足為E,點(diǎn)M在OC上,AM的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)G,交過(guò)C的直線(xiàn)于F,∠1=∠2,連結(jié)CB與DG交于點(diǎn)N.
(1)求證:CF是⊙O的切線(xiàn);
(2)求證:△ACM∽△DCN;
(3)若點(diǎn)M是CO的中點(diǎn),⊙O的半徑為4,cos∠BOC=
14
,求BN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案