【題目】如圖,四邊形中, ,平分,點(diǎn)延長線上一點(diǎn),且

1)證明:;

2)若相交于點(diǎn),,,求的長.

【答案】(1)證明見解析(2)

【解析】

試題分析:(1)直接利用等腰三角形的性質(zhì)結(jié)合互余的定義得出BDC=PDC;

(2)首先過點(diǎn)C作CMPD于點(diǎn)M,進(jìn)而得出CPM∽△APD,求出EC的長即可得出答案.

試題解析:(1)AB=AD,AC平分BAD,

ACBD,

∴∠ACD+BDC=90°,

AC=AD,

∴∠ACD=ADC,

∴∠ADC+BDC=90°,

∴∠BDC=PDC;

(2)解:過點(diǎn)C作CMPD于點(diǎn)M,

∵∠BDC=PDC,

CE=CM,

∵∠CMP=ADP=90°,P=P,

∴△CPM∽△APD,

,

設(shè)CM=CE=x,

CE:CP=2:3,

PC=x,

AB=AD=AC=1,

,

解得:x=,

故AE=1﹣=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購進(jìn)一批籃球和足球.其中籃球的單價(jià)比足球的單價(jià)多40元,用1500元購進(jìn)的籃球個(gè)數(shù)與900元購進(jìn)的足球個(gè)數(shù)相等.
(1)籃球和足球的單價(jià)各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)平面直角坐標(biāo)系,按要求完成下列各小題.

(1)寫出圖中的多邊形ABCDEF頂點(diǎn)在坐標(biāo)軸上的點(diǎn)的坐標(biāo);
(2)說明點(diǎn)B與點(diǎn)C的縱坐標(biāo)有什么特點(diǎn)?線段BC與x軸有怎樣的位置關(guān)系?
(3)寫出點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)E′的坐標(biāo),并指出點(diǎn)E′與點(diǎn)C有怎樣的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式一定成立的是(
A.2a+3b=5ab
B.(a32=a5
C.a2a3=a5
D.(a+b)2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:2x-y2-(y-x2-(x+y)(y-x),其中x=3,y=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷一個(gè)三角形是直角三角形的是( 。

A. 三個(gè)角的比為1:2:3 B. 三條邊滿足關(guān)系a2=b2﹣c2

C. 三條邊的比為1:2:3 D. 三個(gè)角滿足關(guān)系∠B+∠C=∠A

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點(diǎn)E.在△ABC外取一點(diǎn)F,使FA⊥AE,F(xiàn)C⊥BC.

(1)求證:BE=CF;
(2)在AB上取一點(diǎn)M,使BM=2DE,連接ME.試判斷ME與BC是否垂直,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=﹣1是關(guān)于x的一元二次方程ax2+bx20a0)的一個(gè)根,則20192a+2b的值等于(  )

A.2015B.2017C.2019D.2022

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,高AD和BE交于點(diǎn)H,且BH=AC,則∠ABC的度數(shù)是( )
A.30°
B.45°
C.60°
D.30°或45°

查看答案和解析>>

同步練習(xí)冊答案