【題目】如圖,拋物線 y=﹣x22x+3 的圖象與 x 軸交于 A、B 兩點(點 A 在點 B 的左邊),與 y軸交于點 C,點 D 為拋物線的頂點.

1)求點 AB、C 的坐標;

2)點 Mm,0)為線段 AB 上一點(點 M 不與點 A、B 重合),過點 M x 軸的垂線,與直線 AC 交于點 E,與拋物線交于點 P,過點 P PQAB 交拋物線于點 Q,過點 Q QNx 軸于點 N,可得矩形 PQNM.如圖,點 P 在點 Q 左邊,試用含 m 的式子表示矩形 PQNM 的周長;

3)當矩形 PQNM 的周長最大時,m 的值是多少?并求出此時的△AEM 的面積;

4)在(3)的條件下,當矩形 PMNQ 的周長最大時,連接 DQ,過拋物線上一點 F y 軸的平行線,與直線 AC 交于點 G(點 G 在點 F 的上方).若 FG2DQ,求點 F 的坐標.

【答案】(1)A(﹣3,0),B(1,0);(2)矩形 PMNQ 的周長=﹣2m28m+2;(3)矩形的周長最大時,m=﹣2;△AEM的面積為 ;(4F(﹣4,﹣5)或(1,0).

【解析】

(1)利用函數(shù)圖象與坐標軸的交點的求法,求出點A,B,C的坐標;

(2)先確定出拋物線對稱軸,用m表示出PM,MN即可;

(3)由(2)得到的結(jié)論判斷出矩形周長最大時,確定出m,進而求出直線AC的解析式即可;

(4)在(3)的基礎(chǔ)上,判斷出N應(yīng)與原點重合,Q點與C點重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.

(1)由拋物線 y=﹣x2﹣2x+3 可知,C(0,3).令 y=0,則 0=﹣x2﹣2x+3,

解得,x=﹣3 xl,

A(﹣3,0),B(1,0).

(2)由拋物線 y=﹣x2﹣2x+3 可知,對稱軸為 x=﹣1.

Mm0),

PM=﹣m22m+3MN=(﹣m1)×2=﹣2m2,

矩形 PMNQ 的周長=2PM+MN)=(﹣m22m+32m2)×2=﹣2m28m+2

(3)﹣2m2﹣8m+2=﹣2(m+2)2+10,

矩形的周長最大時,m=﹣2.

A(﹣3,0),C(0,3), 設(shè)直線 AC 的解析式 ykx+b,

解得 kl,b3

解析式 yx+3, 令 x=﹣2,則 y=1,

E(﹣2,1),

EM1AM1,

SAM×EM,

即△AEM的面積為.

(4)M(﹣2,0),拋物線的對稱軸為 x=﹣l,

N 應(yīng)與原點重合,Q 點與 C 點重合,

DQDC,

x=﹣1 代入 y=﹣x2﹣2x+3,解得 y=4,

D(﹣1,4),

DQDC

FGDQ

FG4

設(shè) Fn,﹣n22n+3),則 Gn,n+3),

G 在點 F 的上方且 FG4,

n+3)﹣(﹣n2﹣2n+3)=4. 解得 n=﹣4 或 n=1,

F(﹣4,﹣5)或(1,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.

(1)求甲選擇A部電影的概率;

(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)a、bc為常數(shù)且a≠0)中的xy的部分對應(yīng)值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結(jié)論:

1)二次函數(shù)有最小值,最小值為﹣3;

2)當時,y0

3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).

則其中正確結(jié)論的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當PE=2PF時,AP=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為 ___________cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表中記錄了一次試驗中時間與溫度的數(shù)據(jù)(假設(shè)溫度的變化是均勻的)

時間(min)

0

5

10

15

20

25

溫度()

10

25

40

55

70

85

(1)用文字概述溫度與時間之間的關(guān)系:______;

(2)21min的溫度是多少?請列算式計算;

(3)什么時間的溫度是34℃?請用方程求解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB兩點的坐標分別為A02),B20),直線AB與反比例函數(shù)y=的圖象交于點C和點D(﹣1a).

1)求直線AB和反比例函數(shù)的解析式;

2)求∠ACO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABDBDC都是直角三角形,且∠ABD=BDC=90°,∠BAD=30°,∠DBC=45°,則tanDAC的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富學生的校園生活,準備從體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元。

(1)求購買一個足球、一個籃球各需多少元?

(2)根據(jù)學校實際情況,需從體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學最多可以購買多少個籃球?

查看答案和解析>>

同步練習冊答案