準(zhǔn)備一張矩形紙片,按如圖操作:
將△ABE沿BE翻折,使點(diǎn)A落在對角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對角線BD上的N點(diǎn).
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.
 
(1)略;(2)菱形BFDE的面積為:

試題分析:(1)根據(jù)四邊形ABCD是矩形和折疊的性質(zhì)可得EB∥DF,DE∥BF,根據(jù)平行四邊形判定推出即可.
(2)求出∠ABE=30°,根據(jù)直角三角形性質(zhì)求出AE、BE,再根據(jù)菱形的面積計(jì)算即可求出答案.
試題解析:
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∴∠EBD=∠FDB,
∴EB∥DF,
∵ED∥BF,
∴四邊形BFDE為平行四邊形.
(2)解:∵四邊形BFDE為菱形,
∴BE=ED,∠EBD=∠FBD=∠ABE,
∵四邊形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴∠ABE=30°,
∵∠A=90°,AB=2,
∴AE==,BF=BE=2AE=
∴菱形BFDE的面積為:×2=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知四邊形ABCD的對角線AC與BD交于點(diǎn)O,給出下列四個(gè)論斷:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
請你從中選擇兩個(gè)論斷作為條件,以“四邊形ABCD為平行四邊形”作為結(jié)論,完成下列各題:
①構(gòu)造一個(gè)真命題,畫圖并給出證明;
②構(gòu)造一個(gè)假命題,舉反例加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖1中的中國結(jié)掛件是由四個(gè)相同的菱形在頂點(diǎn)處依次串聯(lián)而成,每相鄰兩個(gè)菱形均成30°的夾角,示意圖如圖2.在圖2中,每個(gè)菱形的邊長為10cm,銳角為60°.
(1)連接CD,EB,猜想它們的位置關(guān)系并加以證明;
(2)求A,B兩點(diǎn)之間的距離(結(jié)果取整數(shù),可以使用計(jì)算器)
(參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,平分,交于點(diǎn)平分,交于點(diǎn),交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長是2,E是AB的中點(diǎn),延長BC到點(diǎn)F使CF=AE.
(1)求證:
(2)把向左平移,使重合,得,于點(diǎn).請判斷AH與ED的位置關(guān)系,并說明理由.
(3)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,AC與BD交于點(diǎn)O,點(diǎn)E是BC邊的中點(diǎn),OE=1,則AB的長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個(gè)命題:
(1)兩組對邊分別相等的四邊形是平行四邊形;
(2)兩組對角分別相等的四邊形是平行四邊形;
(3)對角線互相平分的四邊形是平行四邊形;
(4)一組對邊平行且相等的四邊形是平行四邊形.
其中正確的命題個(gè)數(shù)有(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)A、B、C是平面內(nèi)不在同一條直線上的三點(diǎn),點(diǎn)D是平面內(nèi)任意一點(diǎn),若A、B、C、D四點(diǎn)恰能構(gòu)成一個(gè)平行四邊形,則在平面內(nèi)符合這樣條件的點(diǎn)D有( 。
A.1個(gè)        B.2個(gè)        C.3個(gè)        D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

ABCD中, ∠A比∠B小200,則∠A的度數(shù)為(       )
A.600B.800C.1000D.1200

查看答案和解析>>

同步練習(xí)冊答案