精英家教網 > 初中數學 > 題目詳情
(2011•北京)以下是根據北京市國民經濟和社會發(fā)展統(tǒng)計公報中的相關數據,繪制統(tǒng)計圖的一部分.
請根據以上信息解答下列問題:
(1)2008年北京市私人轎車擁有是多少萬輛(結果保留三個有效數字)?
(2)補全條形統(tǒng)計圖;
(3)汽車數量增多除造成交通擁堵外,還增加了碳排放量,為了了解汽車碳排放量的情況小明同學通過網絡了解到汽車的碳排放量與汽車排量有關.如:一輛排量為1.6L的轎車,如果一年行駛1萬千米,這一年,它碳排放量約為2.7噸.于是他調查了他所居住小區(qū)的150輛私人轎車,不同排量的轎車數量如下表所示.
排量(L)
小1.6
1.6
1.8
大于1.8
數量(輛)
29
75
31
15
如果按照小明的統(tǒng)計數據,請你通過計算估計,2010年北京市僅排量為1.6L的這類私人轎車(假設每輛車平均一行行駛1萬千米)的碳排放總量約為多少萬噸?
解:(1)146×(1+19%),
=173.74,
≈174(萬輛),
所以2008年北京市私人轎車擁有量約是174萬輛;
(2)如圖.

(3)276××2.7=372.6(萬噸),
所以估計2010年北京市僅排量為1.6L的這類私人轎車的碳排放總量約為372.6萬噸.解析:
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2011•北京)如圖,在平面直角坐標系xOy中,我把由兩條射線AE,BF和以AB為直徑的半圓所組成的圖形叫作圖形C(注:不含AB線段).已知A(﹣1,0),B(1,0),AE∥BF,且半圓與y軸的交點D在射線AE的反向延長線上.
(1)求兩條射線AE,BF所在直線的距離;
(2)當一次函數y=x+b的圖象與圖形C恰好只有一個公共點時,寫出b的取值范圍;
當一次函數y=x+b的圖象與圖形C恰好只有兩個公共點時,寫出b的取值范圍;
(3)已知?AMPQ(四個頂點A,M,P,Q按順時針方向排列)的各頂點都在圖形C上,且不都在兩條射線上,求點M的橫坐標x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2011•北京)閱讀下面材料:
小偉遇到這樣一個問題,如圖1,在梯形ABCD中,AD∥BC,對角線AC,BD相交于點O.若梯形ABCD的面積為1,試求以AC,BD,AD+BC的長度為三邊長的三角形的面積.

小偉是這樣思考的:要想解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他先后嘗試了翻折,旋轉,平移的方法,發(fā)現(xiàn)通過平移可以解決這個問題.他的方法是過點D作AC的平行線交BC的延長線于點E,得到的△BDE即是以AC,BD,AD+BC的長度為三邊長的三角形(如圖2).
參考小偉同學的思考問題的方法,解決下列問題:
如圖3,△ABC的三條中線分別為AD,BE,CF.
(1)在圖3中利用圖形變換畫出并指明以AD,BE,CF的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以AD,BE,CF的長度為三邊長的三角形的面積等于_____.

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(山東臨沂卷)數學解析版 題型:解答題

(2011•北京)如圖,在平面直角坐標系xOy中,我把由兩條射線AE,BF和以AB為直徑的半圓所組成的圖形叫作圖形C(注:不含AB線段).已知A(﹣1,0),B(1,0),AE∥BF,且半圓與y軸的交點D在射線AE的反向延長線上.
(1)求兩條射線AE,BF所在直線的距離;
(2)當一次函數y=x+b的圖象與圖形C恰好只有一個公共點時,寫出b的取值范圍;
當一次函數y=x+b的圖象與圖形C恰好只有兩個公共點時,寫出b的取值范圍;
(3)已知?AMPQ(四個頂點A,M,P,Q按順時針方向排列)的各頂點都在圖形C上,且不都在兩條射線上,求點M的橫坐標x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(山東臨沂卷)數學解析版 題型:解答題

(2011•北京)閱讀下面材料:
小偉遇到這樣一個問題,如圖1,在梯形ABCD中,AD∥BC,對角線AC,BD相交于點O.若梯形ABCD的面積為1,試求以AC,BD,AD+BC的長度為三邊長的三角形的面積.

小偉是這樣思考的:要想解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他先后嘗試了翻折,旋轉,平移的方法,發(fā)現(xiàn)通過平移可以解決這個問題.他的方法是過點D作AC的平行線交BC的延長線于點E,得到的△BDE即是以AC,BD,AD+BC的長度為三邊長的三角形(如圖2).
參考小偉同學的思考問題的方法,解決下列問題:
如圖3,△ABC的三條中線分別為AD,BE,CF.
(1)在圖3中利用圖形變換畫出并指明以AD,BE,CF的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以AD,BE,CF的長度為三邊長的三角形的面積等于_____.

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(山東臨沂卷)數學解析版 題型:解答題

(2011•北京)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.

查看答案和解析>>

同步練習冊答案