【題目】1()2 017×161 008

2(8a6b3)2÷(2a2b);

3)因式分解:a2b-b3

4)因式分解:﹣3x3+6x2y3xy2

5)解方程:

6)解方程: =0

【答案】1;(2-32 a10b5;(3b(a+b)(a-b);(4-3x(x-y)2;(5x=;(6x=2

【解析】

1)根據(jù)冪的運算公式計算即可得出答案;

2)先利用積的乘方將括號展開,再利用單項式除以單項式的法則計算即可得出答案;

3)先提取公因式,再用平方差公式計算即可得出答案;

4)先提取公因式,再用完全平方公式計算即可得出答案;

5)先去分母,再移項,然后合并同類項,接著系數(shù)化為1,最后檢驗即可得出答案;

6)先去分母,再合并同類項,最后檢驗即可得出答案.

解:(1)原式=

=

=

2)原式=64a12b6÷(2a2b)

=-32 a10b5

3)原式=b(a2-b2)

=b(a+b)(a-b)

4)原式=-3x(x2-2xy+y2)

=-3x(x-y)2

5

2×2x+2x+6=7

4x+2x=7-6

6x=1

x=

檢驗:當(dāng)x=時,x+3≠0

故解為:x=

6 =0

x+1-3=0

x=2

檢驗:將x=2代入得x2-1≠0

故解為:x=2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角ABC中,∠BAC90°,ABAC,∠ADB45°

1)求證:BDCD;

2)若BD6,CD2,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為快樂分式”.如:,則 快樂分式

(1)下列式子中,屬于快樂分式的是 (填序號);

,② ,③ ,④ .

2)將快樂分式化成一個整式與一個分子為常數(shù)的分式的和的形式為: = .

3)應(yīng)用:先化簡 ,并求x取什么整數(shù)時,該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某個圖形是按下面方法連接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).

(1)請連接圖案,它是一個什么漢字?

(2)作出這個圖案關(guān)于y軸的軸對稱圖形,并寫出新圖案相應(yīng)各端點的坐標(biāo),你得到一個什么漢字?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點D為AB上一點且BD=8厘米,點P在線段BC上以2厘米/秒的速度由B點向C點運動,設(shè)運動時間為t,同時,點Q在線段CA上由C點向A點運動.

(1)用含t的式子表示PC的長為_______________;

(2)若點Q的運動速度與點p的運動速度相等,當(dāng)t=2時,三角形BPD與三角形CQP是否全等,請說明理由;

(3)若點Q的運動速度與點P的運動速度不相等,請求出點Q的運動速度是多少時,能夠使三角形BPD與三角形CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,點D、E、F分別在AB、BC、AC BECF,AD+ECAB

1)求證:DEF是等腰三角形;

2)當(dāng)∠A40°時,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明聽說“武黃城際列車”已經(jīng)開通,便設(shè)計了如下問題:如圖,以往從黃石A坐客車到武昌客運站B,現(xiàn)在可以在黃石A坐“武黃城際列車”到武漢青山站C,再從青山站C坐市內(nèi)公共汽車到武昌客運站B.設(shè)AB=80 km,BC=20 km,∠ABC=120°.請你幫助小明解決以下問題:

(1)求A,C之間的距離.(參考數(shù)據(jù)≈4.6)

(2)若客車的平均速度是60 km/h,市內(nèi)的公共汽車的平均速度為40 km/h,“武黃城際列車”的平均速度為180 km/h,為了在最短時間內(nèi)到達(dá)武昌客運站,小明應(yīng)選擇哪種乘車方案?請說明理由.(不計候車時間)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列步驟是一位同學(xué)在解方程3時的解答過程:

方程兩邊都乘以x,得x1+23(第一步)

移項,合并同類項,得x2(第二步)

經(jīng)檢驗,x2是原方程的解(第三步)

所以原方程的解是:x2(第四步)

1)他的解答過程是從第   步開始出錯的,出錯原因是   ;

2)請寫出此題正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

同步練習(xí)冊答案