【題目】在△ABC中,∠C=90°,AC=BC,點(diǎn)P在線段BA的延長(zhǎng)線上,作PDAC,交AC的延長(zhǎng)線于點(diǎn)D,點(diǎn)D關(guān)于直線AB的對(duì)稱點(diǎn)為E,連接PE并延長(zhǎng)PE到點(diǎn)F,使EF=AC,連接CF

1)依題意補(bǔ)全圖1;

2)求證:AD=CF;

3)若AC=2,點(diǎn)Q在直線AB上,寫出一個(gè)AQ的值,使得對(duì)于任意的點(diǎn)P總有QD=QF,并證明.

【答案】1)見解析;(2)見解析;(3AQ=,證明見解析.

【解析】

1)依照題意,補(bǔ)全圖形即可;

2)通過證明四邊形DCFP是矩形,可得PD=CF,由等腰直角三角形的性質(zhì)可得AD=PD=CF;

3)通過證明△DAQ≌△FCQ,可得QD=QF

1)補(bǔ)全圖形,如圖1所示:

2∵∠C=90°,AC=BC,

∴∠B=∠CAB=45°,

∵PD⊥AC,

∴∠PDA=90°

∴∠DPA=90°∠PAD=45°=∠DAP,

∴AD=DP,

點(diǎn)D關(guān)于直線AB的對(duì)稱點(diǎn)為E,

∴∠FPA=∠DPA=45°,PE=PD,

∴∠DPF=90°

∴∠DPF+∠D=180°,

∴PF//CD,

∵EF=AC

∴EF+PE=AC+AD,

PF=CD,

∴PFCD,

四邊形PDCF是平行四邊形,

∵∠PDA=90°,

四邊形DCFP是矩形,

∴PD=CF,

∴AD=CF;

3AQ=,

理由如下:如圖2,連接CQ,

∵∠C=90°,AC=BC=2,

∴AB=2,∠B=∠CAB=45°

∵AQ=,

∴AQ=BQ,

∵∠C=90°,AC=BC=2,

∴CQ=AQ=BQ,∠QCA=∠CAQ=45°,

∴∠DAQ=∠QCF=135°,

∵AD=CF,

∴△DAQ≌△FCQSAS),

∴FQ=DQ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線)與雙曲線交于,兩點(diǎn)(點(diǎn)在第一象限),直線)與雙曲線交于,兩點(diǎn).當(dāng)這兩條直線互相垂直,且四邊形的周長(zhǎng)為時(shí),點(diǎn)的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(﹣6,0),點(diǎn)B0,8),點(diǎn)C在線段AB上,點(diǎn)Dy軸上,將∠ABO沿直線CD翻折,使點(diǎn)B與點(diǎn)A重合.若點(diǎn)E在線段CD延長(zhǎng)線上,且CE5,點(diǎn)My軸上,點(diǎn)N在坐標(biāo)平面內(nèi),如果以點(diǎn)C、EM、N為頂點(diǎn)的四邊形是菱形,那么點(diǎn)N有( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測(cè)量某條河的對(duì)岸邊C,D兩點(diǎn)間的距離,在河的岸邊與平行的直線上取兩點(diǎn)A,B,測(cè)得,,量得長(zhǎng)為70米.求CD兩點(diǎn)間的距離(參考數(shù)據(jù):,,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民掌握民法知識(shí)的情況,對(duì)社區(qū)內(nèi)的甲、乙兩個(gè)小區(qū)各500名居民進(jìn)行了測(cè)試,從中各隨機(jī)抽取50名居民的成績(jī)(百分制)進(jìn)行整理、描述、分析,得到部分信息:

a.甲小區(qū)50名居民成績(jī)的頻數(shù)直方圖如下(數(shù)據(jù)分成5組:50x60,60x70,70x80,80x9090x100);

b.圖中,70x80組的前5名的成績(jī)是:79 79 79 78 77

c.圖中,80x90組的成績(jī)?nèi)缦拢?/span>

82

83

84

85

85

86

86

86

86

86

86

86

86

87

87

87

88

88

89

89

d.兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上)、滿分人數(shù)如下表所示:

小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

滿分人數(shù)

78.58

84.5

a

b

1

76.92

79.5

90

40%

4

根據(jù)以上信息,回答下列問題:

1)求表中a,b的值;

2)請(qǐng)估計(jì)甲小區(qū)500名居民成績(jī)能超過平均數(shù)的人數(shù);

3)請(qǐng)盡量從多個(gè)角度,分析甲、乙兩個(gè)小區(qū)參加測(cè)試的居民掌握民法知識(shí)的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖為我市某校2015年參加各類比賽(包括圍棋、書法、繪畫、鋼琴四個(gè)類別)的參賽人數(shù)統(tǒng)計(jì)圖:

1)該校參加比賽的總?cè)藬?shù)是 人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖中,該校參加圍棋所對(duì)應(yīng)的圓心角的度數(shù)是 ;

3)從全市中小學(xué)參加比賽選手中隨機(jī)抽取60人,其中有20人獲獎(jiǎng).今年我市中小學(xué)參加比賽人數(shù)共有2400人,請(qǐng)你估算今年參加繪畫比賽的人數(shù)以及參加比賽獲獎(jiǎng)的總?cè)藬?shù)約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于A,與y軸交于B,拋物線經(jīng)過點(diǎn)A,且與y軸交于點(diǎn)C04),Px軸上一動(dòng)點(diǎn),按逆時(shí)針方向作CPE,使CPEAOB

1)求拋物線解析式.

2)若點(diǎn)E落在拋物線上,求出點(diǎn)P的坐標(biāo).

3)若ABE是直角三角形,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB是直線y=x+1的一部分,其中點(diǎn)Ay軸上,點(diǎn)B橫坐標(biāo)為2,曲線BC是雙曲線)的一部分,由點(diǎn)C開始不斷重復(fù)“ABC”的過程,形成一組波浪線,點(diǎn)P(2019,m)Q(2025,n)均在該波浪線上,Gx軸上一動(dòng)點(diǎn),則PQG周長(zhǎng)的最小值為(

A.16B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)E□ABCD對(duì)角線AC上的一點(diǎn),點(diǎn)F在線段BE的延長(zhǎng)線上,且EF=BE,線段EF與邊CD相交于點(diǎn)G

1)求證:DF//AC;

2)如果AB=BE,DG=CG,聯(lián)結(jié)DE、CF,求證:四邊形DECF是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案