在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計算出它的面積,這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為、2,請在圖①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個六邊形綠化區(qū)ABCDEF被分割成7個部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

【答案】分析:(1)利用恰好能覆蓋△ABC的邊長為3的小正方形的面積減去三個小直角三角形的面積即可解答;
(2)三角形DEF的面積同(1)而求得為8;
(3)利用(2)的結(jié)論從而求解.
解答:解:(1)S△ABC=3×3-×3×1-×2×1-×3×2=3.5;

(2)S△DEF=4×5-×2×3-×2×4-×2×5=8;

(3)由(2)可知S△PQR=8,
∴六邊形花壇ABCDEF的面積為:
S正方形ABQP+S正方形RQDC+S正方形EFPR+4S△PQR
=13+20+29+8×4
=94.
點評:本題考查了三角形的面積,從構(gòu)圖中很容易得到(1),其他根據(jù)構(gòu)圖中各邊所占長度即能求得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案