(2012•寶安區(qū)二模)如圖1,已知矩形ABCD中,AB=
4
3
BC
,O是矩形ABCD的中心,過(guò)點(diǎn)O作OE⊥AB于E,作OF⊥BC于F,得矩形BEOF.
(1)線段AE與CF的數(shù)量關(guān)系是
AE=
4
3
CF;
AE=
4
3
CF;
,直線AE與CF的位置關(guān)系是
AE⊥CF
AE⊥CF
;
(2)固定矩形ABCD,將矩形BEOF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到如圖2的位置,連接AE、CF.那么(1)中的結(jié)論是否依然成立?請(qǐng)說(shuō)明理由;
(3)若AB=8,當(dāng)矩形BEOF旋轉(zhuǎn)至點(diǎn)O在CF上時(shí)(如圖3),設(shè)OE與BC交于點(diǎn)P,求PC的長(zhǎng).
分析:(1)根據(jù)O是矩形ABCD的中心,OE⊥AB于E,OF⊥BC于F可知,四邊形OEBF為矩形,可推知各線段的數(shù)量及位置關(guān)系;
(2)延長(zhǎng)AE交BC于H,交CF于G,由已知得BE=
1
2
AB
BF=
1
2
BC
進(jìn)而得到
BE
AB
=
BF
BC
=
1
2
,構(gòu)造相似三角形△ABE和△CBF,根據(jù)相似三角形的性質(zhì)進(jìn)行判斷;
(3)根據(jù)已知條件,利用勾股定理求出CF的長(zhǎng),進(jìn)而求出OC的長(zhǎng),判斷出△BPE∽△CPO,根據(jù)相似三角形的性質(zhì)即可求出PC的長(zhǎng).
解答:解:(1)∵O是矩形ABCD的中心,OE⊥AB于E,OF⊥BC于F,
∴AE=
1
2
AB,CF=
1
2
BC,
∵AB=
4
3
BC,
1
2
AB=
1
2
×
4
3
BC,即AE=
4
3
CF;
∵AB⊥BC,點(diǎn)E、F分別是AB、BC上的點(diǎn),
∴AE⊥CF;
故答案為AE=
4
3
CF;AE⊥CF;

(2)(1)中的結(jié)論仍然成立.
如圖1,延長(zhǎng)AE交BC于H,交CF于G,
由已知得BE=
1
2
AB
,BF=
1
2
BC

BE
AB
=
BF
BC
=
1
2

∵∠ABC=∠EBF=90°,
∴∠ABE=∠CBF,
∴△ABE∽△CBF,
∴∠BAE=∠BCF,
AE
CF
=
AB
BC
=
4
3
,
∵∠BAE+∠AHB=90°,∠AHB=∠CHG,
∴∠BCF+∠CHG=90°
∴∠CGH=180°-(∠BCF+∠CHG)=90°,
∴AE⊥CF,且AE=
4
3
CF


(3)∵AB=
4
3
BC
,AB=8,
∴BC=6,
∴BE=OF=4,BF=OE=3,
∵點(diǎn)O在CF上,
∴∠CFB=90°,
∴CF=
BC2-BF2
=
62-32
=3
3
,
∴OC=CF-OF=3
3
-4

∵∠CPO=∠BPE,∠PEB=∠POC=90°,
∴△BPE∽△CPO,
CP
BP
=
OC
BE

設(shè)CP=x,則BP=6-x,
x
6-x
=
3
3
-4
4

解得:x=
18-8
3
3
,
PC=
18-8
3
3
點(diǎn)評(píng):本題考查了相似形綜合問(wèn)題,借助矩形的性質(zhì),做出適當(dāng)輔助線可有助于問(wèn)題的解答,由于綜合性較強(qiáng),故難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶安區(qū)二模)如圖,已知菱形ABCD中,AE⊥BC于點(diǎn)E.若sinB=
2
3
,AD=6,則菱形ABCD的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶安區(qū)二模)如圖,公園里,小穎沿著斜坡AB從A點(diǎn)爬上到B點(diǎn)后,順著斜坡從B點(diǎn)滑下到C點(diǎn).已知A、C兩點(diǎn)在同一水平線上,∠A=45°,∠C=30°,AB=4米,則BC的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶安區(qū)二模)將一個(gè)箭頭符號(hào),每次逆時(shí)針旋轉(zhuǎn)90°,這樣便得到一串如圖所示“箭頭符號(hào)”串,那么按此規(guī)律排列下去,第2012個(gè)“箭頭符號(hào)”是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶安區(qū)二模)如圖,等腰直角三角形ABC以1cm/s的速度沿直線l向右移動(dòng),直到AB與EF重合時(shí)停止.設(shè)xs時(shí),三角形與正方形重疊部分的面積為ycm2,則下列各圖中,能大致表示出y與x之間的函數(shù)關(guān)系的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶安區(qū)二模)如圖,已知⊙O中,半徑OC⊥弦AB于點(diǎn)D,∠AOC=60°.
(1)求證:△OAD≌△CBD;
(2)若AB=2,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案