【題目】如圖,直線y=k1xb與雙曲線y相交于A(1,2)、B(m,-1)兩點(diǎn)

(1)求直線和雙曲線的解析式

(2)A1(x1,y1)、A2(x2y2)、A3(x3y3)為雙曲線上的三點(diǎn),x1x2<0<x3,請直接寫出y1、y2y3的大小關(guān)系式;

(3)觀察圖象請直接寫出不等式k1xb的解集

【答案】(1) yx+1;(2) y2y1y3(3) x>1或-2<x<0

【解析】1雙曲線經(jīng)過點(diǎn)A1,2),

∴k22,雙曲線的解析式為

點(diǎn)Bm,-1)在雙曲線上,

∴m=-2,則B(-2,-1).

由點(diǎn)A1,2),B(-2,-1)在直線yk1xb上,

解得

直線的解析式為yx1

2在第三象限內(nèi)yx的增大而減小,∴y2y10

∵y3是正數(shù),故y30,∴y2y1y3

3)由題圖可知x1或-2x0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是(
A.∠ABP=∠C
B.∠APB=∠ABC
C.AB2=AP?AC
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為 .其中,正確的結(jié)論是(
A.①②④
B.①③⑤
C.②③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場對一種新售的手機(jī)進(jìn)行市場問卷調(diào)查,其中一個項(xiàng)目是讓每個人按A(不喜歡)、B(一般)、C(不比較喜歡)、D(非常喜歡)四個等級對該手機(jī)進(jìn)行評價(jià),圖①和圖②是該商場采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:

(1)本次調(diào)查的人數(shù)為多少人?A等級的人數(shù)是多少?請?jiān)趫D中補(bǔ)全條形統(tǒng)計(jì)圖.

(2)圖①中,a等于多少?D等級所占的圓心角為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.

(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五月初,我市多地遭遇了持續(xù)強(qiáng)降雨的惡劣天氣,造成部分地區(qū)出現(xiàn)嚴(yán)重洪澇災(zāi)害,某愛心組織緊急籌集了部分資金,計(jì)劃購買甲、乙兩種救災(zāi)物品共2000件送往災(zāi)區(qū),已知每件甲種物品的價(jià)格比每件乙種物品的價(jià)格貴10元,用350元購買甲種物品的件數(shù)恰好與用300元購買乙種物品的件數(shù)相同

(1)求甲、乙兩種救災(zāi)物品每件的價(jià)格各是多少元?

(2)經(jīng)調(diào)查,災(zāi)區(qū)對乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這2000件物品,需籌集資金多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條流水生產(chǎn)線上L1、L2、L3、L4、L5處各有一名工人在工作,現(xiàn)要在流水生產(chǎn)線上設(shè)置一個零件供應(yīng)站P,使五人到供應(yīng)站P的距離總和最小,這個供應(yīng)站設(shè)置的位置是(  )

A. L2 B. L3 C. L4 D. 生產(chǎn)線上任何地方都一樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長相同的四個小正方形,已知下部的小正方形的邊長為am,計(jì)算:

1)窗戶的面積;

2)窗框的總長;

3)若a1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計(jì),求制作這種窗戶需要的費(fèi)用是多少元(π取3.14,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到(點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對應(yīng)點(diǎn)),連接CC′,則∠CC′B′的度數(shù)是

查看答案和解析>>

同步練習(xí)冊答案