【題目】若關于x的方程(a+3)x|a|﹣1﹣3x+2=0是一元二次方程,則a的值為_____

【答案】3

【解析】由題意得:|a|﹣1=2,且a+30,

解得:a=3,

故答案為:3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點(27)在函數(shù)y=ax+3的圖象上,則a的值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為原點,平行四邊形ABCD的邊BC在x軸上,D點在y軸上,C點坐標為2,0,BC=6,∠BCD=60°,點E是AB上一點,AE=3EB,⊙P過D,O,C三點,拋物線y=ax2+bx+c過點D,B,C三點.

1求拋物線的解析式;

2求證:ED是⊙P的切線;

3若點M為此拋物線的頂點,平面上是否存在點N,使得以點B,D,M,N為頂點的四邊形為平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高服務質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.

(1甲、乙兩種套房每套提升費用各多少萬元?

(2如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?

(3在(2的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0,市政府如何確定方案才能使費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( .

A.帶 B.帶 C.帶 D.帶

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x4﹣2x2﹣400x=9999的解是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形兩個內(nèi)角的差等于第三個內(nèi)角,則它是( )

A. 銳角三角形B. 鈍角三角形C. 直角三角形D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.

(1求證:BD=CD;

(2如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學興趣小組對函數(shù)的圖像和性質(zhì)進行了探究,探究過程如下,請補充完整.

1自變量的取值范圍是全體實數(shù),的幾組對應值列表如下:

0

1

2

3

4

3

0

0

3

其中,=____________.

2根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖像的一部分,請畫出該圖像的另一部分.

3觀察函數(shù)圖像,寫出兩條函數(shù)的性質(zhì):

4進一步探究函數(shù)圖像發(fā)現(xiàn):

函數(shù)圖像與軸有__________個交點,所以對應方程有___________個實數(shù)根;

方程有___________個實數(shù)根;

關于的方程有4個實數(shù)根,的取值范圍是_______________________

查看答案和解析>>

同步練習冊答案