【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)Q、E、F分別在BC、AB、AC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).
(1)當(dāng)AE=8時(shí),求EF的長(zhǎng);
(2)設(shè)AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x為何值時(shí),y有最大值,最大值是多少?
(3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.
【答案】(1)4;(2)①y=﹣x2+3x(0<x<12);②x=6時(shí),y有最大值為9;(3)S=
【解析】
(1)由EF∥BC,可得,由此即可解決問(wèn)題;
(2)①先根據(jù)點(diǎn)E為AB上一點(diǎn)得出自變量x的取值范圍,根據(jù)30度的直角三角形的性質(zhì)求出EF和AF的長(zhǎng),在在Rt△ACB中,根據(jù)三角函數(shù)求出AC的長(zhǎng),計(jì)算FC的長(zhǎng),利用矩形的面積公式可求得S的函數(shù)關(guān)系式;
②把二次函數(shù)的關(guān)系式配方可以得結(jié)論;
(3)分兩種情形分別求解即可解決問(wèn)題.
解:(1)在Rt△ABC中,∵AB=12,∠A=30°,
∴BC=AB=6,AC=BC=6,
∵四邊形EFPQ是矩形,
∴EF∥BC,
∴=,
∴=,
∴EF=4.
(2)①∵AB=12,AE=x,點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合,
∴0<x<12,
∵四邊形CDEF是矩形,
∴EF∥BC,∠CFE=90°,
∴∠AFE=90°,
在Rt△AFE中,∠A=30°,
∴EF=x,
AF=cos30°AE=x,
在Rt△ACB中,AB=12,
∴cos30°=,
∴AC=12×=6,
∴FC=AC﹣AF=6﹣x,
∴y=FCEF=x(6﹣x)=﹣x2+3x(0<x<12);
②y=x(12﹣x)=﹣(x﹣6)2+9,
當(dāng)x=6時(shí),S有最大值為9;
(3)①當(dāng)0≤t<3時(shí),如圖1中,重疊部分是五邊形MFPQN,
S=S矩形EFPQ﹣S△EMN=9﹣t2=﹣t2+9.
②當(dāng)3≤t≤6時(shí),重疊部分是△PBN,
S=(6﹣t)2,
綜上所述,S=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,E,F(xiàn),C在一條直線上,若將△DEC的邊EC沿AC方向平移,平移過(guò)程中始終滿(mǎn)足下列條件:AE=CF,DE⊥AC于點(diǎn)E,BF⊥AC于點(diǎn)F,且AB=CD.則當(dāng)點(diǎn)E,F(xiàn)不重合時(shí),BD與EF的關(guān)系是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)當(dāng)a≠0時(shí),求的值.(寫(xiě)出解答過(guò)程)
(2)若a≠0,b≠0,且+ =0,則的值為 .
(3)若ab>0,則++的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn)
(1)求證:△ABM≌△DCM
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD:AB= _時(shí),四邊形MENF是正方形(只寫(xiě)結(jié)論,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OA=OB,OC=OD,AD和BC相交于點(diǎn)E,則圖中共有全等三角形的對(duì)數(shù)( 。
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等的三角形的對(duì)數(shù)是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】吉林省廣播電視塔(簡(jiǎn)稱(chēng)“吉塔”)是我省目前最高的人工建筑,也是俯瞰長(zhǎng)春市美景的最佳去處.某科技興趣小組利用無(wú)人機(jī)搭載測(cè)量?jī)x器測(cè)量“吉塔”的高度.已知如圖將無(wú)人機(jī)置于距離“吉塔”水平距離138米的點(diǎn)C處,則從無(wú)人機(jī)上觀測(cè)塔尖的仰角恰為30°,觀測(cè)塔基座中心點(diǎn)的俯角恰為45°.求“吉塔”的高度.(注: ≈1.73,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD,BE是兩條中線,則S△EDC:S△ABC=( )
A.1:2
B.1:4
C.1:3
D.2:3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com