(2002杭州)用配方法將二次三項(xiàng)式變形的結(jié)果是

[  ]

A.
B.
C.
D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個(gè)數(shù)有( )
(1)用換元法解方程++3=0,設(shè)=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2
(3)若x2-4x+4+=0,求x、y的值.用非負(fù)數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個(gè)全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《分式方程》(01)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個(gè)數(shù)有( )
(1)用換元法解方程++3=0,設(shè)=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+=0,求x、y的值.用非負(fù)數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個(gè)全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《代數(shù)式》(02)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個(gè)數(shù)有( )
(1)用換元法解方程++3=0,設(shè)=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+=0,求x、y的值.用非負(fù)數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個(gè)全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《無理數(shù)與實(shí)數(shù)》(02)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個(gè)數(shù)有( )
(1)用換元法解方程++3=0,設(shè)=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+=0,求x、y的值.用非負(fù)數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個(gè)全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個(gè)數(shù)有( )
(1)用換元法解方程++3=0,設(shè)=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2
(3)若x2-4x+4+=0,求x、y的值.用非負(fù)數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個(gè)全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案