【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線(xiàn)C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線(xiàn)C2 . C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)求拋物線(xiàn)C2的解析式;
(2)若拋物線(xiàn)C2的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,與拋物線(xiàn)C2交于點(diǎn)D,與拋物線(xiàn)C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請(qǐng)證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對(duì)稱(chēng)軸DE上任意一點(diǎn),在拋物線(xiàn)C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)求出點(diǎn)G的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵將拋物線(xiàn)C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線(xiàn)C2,

∴拋物線(xiàn)C1的頂點(diǎn)(0,3)向右平移1個(gè)單位,再向下平移7個(gè)單位得到(1,﹣4).

∴拋物線(xiàn)C2的頂點(diǎn)坐標(biāo)為(1,﹣4).

∴拋物線(xiàn)C2的解析式為y=(x﹣1)2﹣4,

即y=x2﹣2x﹣3;


(2)

解:證明:由x2﹣2x﹣3=0,

解得:x1=﹣1,x2=3,

∵點(diǎn)A在點(diǎn)B的左側(cè),

∴A(﹣1,0),B(3,0),AB=4.

∵拋物線(xiàn)C2的對(duì)稱(chēng)軸為x=1,頂點(diǎn)坐標(biāo)D為(1,﹣4),

∴CD=4.AC=CB=2.

將x=1代入y=x2+3得y=4,

∴E(1,4),CE=CD.

∴四邊形ADBE是平行四邊形.

∵ED⊥AB,

∴四邊形ADBE是菱形.

S菱形ADBE=2× ×AB×CE=2× ×4×4=16.


(3)

解:存在.分OB為平行四邊形的邊和對(duì)角線(xiàn)兩種情況:

①當(dāng)OB為平行四邊形的一邊時(shí),如圖1,

設(shè)F(1,y),

∵OB=3,∴G1(﹣2,y)或G2(4,y).

∵點(diǎn)G在y=x2﹣2x﹣3上,

∴將x=﹣2代入,得y=5;將x=4代入,得y=5.

∴G1(﹣2,5),G2(4,5).

②當(dāng)OB為平行四邊形的一對(duì)角線(xiàn)時(shí),如圖2,

設(shè)F(1,y),OB的中點(diǎn)M,過(guò)點(diǎn)G作GH⊥OB于點(diǎn)H,

∵OB=3,OC=1,∴OM= ,CM=

∵△CFM≌△HGM(AAS),∴HM=CM= .∴OH=2.

∴G3(2,﹣y).

∵點(diǎn)G在y=x2﹣2x﹣3上,

∴將(2,﹣y)代入,得﹣y=﹣3,即y=3.

∴G3(2,﹣3).

綜上所述,在拋物線(xiàn)C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,點(diǎn)G的坐標(biāo)為G1(﹣2,5),G2(4,5),G3(2,﹣3).


【解析】(1)根據(jù)二次函數(shù)平移的規(guī)律:“左加右減,上加下減”,得出平移后解析式即可;(2)首先求出A,B兩點(diǎn)的坐標(biāo),再利用頂點(diǎn)坐標(biāo)得出AC=CB,CE=CD,進(jìn)而得出四邊形ADBE是平行四邊形以及四邊形ADBE是菱形,再利用三角形面積公式求出即可;(3)利用分OB為平行四邊形的邊和對(duì)角線(xiàn)兩種情況:①當(dāng)OB為平行四邊形的一邊時(shí),②當(dāng)OB為平行四邊形的一對(duì)角線(xiàn)時(shí)分別得出即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一圓形水管的截面圖,已知⊙O的半徑OA=13,水面寬AB=24,則水的深度CD是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,若動(dòng)點(diǎn)P在拋物線(xiàn)y=ax2上,⊙P恒過(guò)點(diǎn)F(0,n),且與直線(xiàn)y=﹣n始終保持相切,則n=(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長(zhǎng)為半徑畫(huà)弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于 EF的長(zhǎng)半徑畫(huà)弧,兩弧交于點(diǎn)G;作射線(xiàn)AG交CD于點(diǎn)H.則下列結(jié)論:①AG平分∠DAB,②CH= DH,③△ADH是等腰三角形,④SADH= S四邊形ABCH
其中正確的有( )

A.①②③
B.①③④
C.②④
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,DC∥AB,E是DC延長(zhǎng)線(xiàn)上的點(diǎn),連接AE,交BC于點(diǎn)F.

(1)求證:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地植物園從正門(mén)到側(cè)門(mén)有一條小路,甲徒步從正門(mén)出發(fā)勻速走向側(cè)門(mén),乙與甲同時(shí)出發(fā),騎自行車(chē)從側(cè)門(mén)勻速前往正門(mén)到達(dá)正門(mén)后休息0.2小時(shí),然后按原路原速勻速返回側(cè)門(mén),圖中折線(xiàn)分別表示甲、乙到側(cè)門(mén)的距離y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象,根據(jù)圖象信息解答下列問(wèn)題:

(1)求甲到側(cè)門(mén)的距離yx之間的函數(shù)關(guān)系式;

(2)求甲、乙第一次相遇時(shí)到側(cè)門(mén)的距離.

(3)求甲、乙第二次相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtAOB中,∠AOB為直角,A(﹣3,a)、B(3,b),a+b﹣12=0,則△AOB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)在剎車(chē)后行駛的距離s(單位:米)與時(shí)間t(單位:秒)之間的關(guān)系得部分?jǐn)?shù)據(jù)如下表:

時(shí)間t(秒)

0

0.2

0.4

0.6

0.8

1.0

1.2

行駛距離s(米)

0

2.8

5.2

7.2

8.8

10

10.8

假設(shè)這種變化規(guī)律一直延續(xù)到汽車(chē)停止.

(1)根據(jù)這些數(shù)據(jù)在給出的坐標(biāo)系中畫(huà)出相應(yīng)的點(diǎn);
(2)選擇適當(dāng)?shù)暮瘮?shù)表示s與t之間的關(guān)系,求出相應(yīng)的函數(shù)解析式;
(3)①剎車(chē)后汽車(chē)行駛了多長(zhǎng)距離才停止? ②當(dāng)t分別為t1 , t2(t1<t2)時(shí),對(duì)應(yīng)s的值分別為s1 , s2 , 請(qǐng)比較 的大小,并解釋比較結(jié)果的實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角△ABC中,斜邊AB=5,直角邊BC、AC之長(zhǎng)是一元二次方程x2﹣(2m﹣1)x+4(m﹣1)=0的兩根,則m的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案