【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計(jì),當(dāng)每輛車的月租金為3000元時(shí),可全部租出.每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加1輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的租金定為多少元時(shí),租賃公司的月收益(租金收入扣除維護(hù)費(fèi))可達(dá)到306600元?

【答案】
(1)解:根據(jù)題意得:100﹣ =88(輛),

則當(dāng)每輛車的月租金定為3600元時(shí),能租出88輛車


(2)解:設(shè)每輛車的月租金為(3000+x)元,

根據(jù)題意得:(100﹣ )[(3000+x)﹣150]﹣ ×50=306600,

解得:x1=900,x2=1200,

∴3000+900=3900(元),3000+1200=4200(元),

則當(dāng)每輛車的月租金為3900元或4200元時(shí),月收益達(dá)到306600元


【解析】(1)根據(jù)題意列出算式,計(jì)算即可得到結(jié)果;(2)設(shè)每輛車的月租金為(3000+x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是( )
A.8,6
B.7,6
C.7,8
D.8,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線m:y=2x+2是直線n向右平移2個(gè)單位再向下平移5個(gè)單位得到的,而(2a,7)在直線n上,則a=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOC,∠BOC=70°,OF是OE的反向延長線.

(1)求∠DOF與∠BOF的度數(shù);

(2)OF平分∠AOD嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子有6個(gè)完全一樣的球,分別寫著數(shù)字1、2、3、4、5、6,從中摸出一個(gè)記下球上的數(shù)字,然后放進(jìn)去,在摸一個(gè)球,則兩次摸出球上的數(shù)字之和為5的概率為__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20181024日上午九時(shí),被譽(yù)為交通工程界的“珠穆朗瑪峰”的港珠澳大橋正式通車,這座橋總長約55000m,用科學(xué)記數(shù)法表示這座橋總長為________m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)秀美龍江,某學(xué)校組織師生參加一年一度的植樹綠化工作,準(zhǔn)備租用7輛客車,現(xiàn)有甲、乙兩種客車,它們的載客量和租金如下表,設(shè)租用甲種客車x輛,租車總費(fèi)用為y元,

甲種客車

乙種客車

載客量/(人/輛)

60

40

租金/(元/輛)

360

300

(1)求出y(單位:元)與x(單位:輛)之間的函數(shù)關(guān)系式。

(2)若該校共有350名師生前往參加勞動(dòng),共有多少種租車方案?

(3)帶隊(duì)老師從學(xué)校預(yù)支租車費(fèi)用2400元,試問預(yù)支的租車費(fèi)用是否可有結(jié)余?若有結(jié)余,最多可結(jié)余多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊BCx軸重合,連接對(duì)角線BDy軸于點(diǎn)E,過點(diǎn)AAGBD于點(diǎn)G,直線GFAD于點(diǎn)FAB、OC的長分別是一元二次方程x-5x+6=0的兩根(ABOC),且tanADB=.

(1)求點(diǎn)E、點(diǎn)G的坐標(biāo);

(2)直線GFAGDAGFDGF兩個(gè)三角形,且SAGFSDGF =3:1,求直線GF的解析式;

(3)點(diǎn)Py軸上,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)Q,使以點(diǎn)BD、P、Q為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案