9、如圖,已知PA,PB分別切⊙O于點A、B,∠P=60°,PA=8,那么弦AB的長是
8
分析:由PA,PB分別切⊙O于點A、B,根據(jù)切線長定理,即可求得PA=PB,又由∠P=60°,即可證得△PAB是等邊三角形,由PA=8,則可求得弦AB的長.
解答:解:∵PA,PB分別切⊙O于點A、B,
∴PA=PB,
∵∠P=60°,
∴△PAB是等邊三角形,
∴AB=PA=PB,
∵PA=8,
∴AB=8.
故答案為:8.
點評:此題考查了切線長定理與等邊三角形的判定與性質.此題比較簡單,解題的關鍵是注意熟記切線長定理,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖,已知PA、PB切⊙O于點A、B,OP交AB于C,則圖中能用字母表示的直角共有(  )個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知PA、PB都是⊙O的切線,A、B為切點,且∠APB=60°.若點C是⊙O異于A、B的任意一點,則∠ACB=(  )
A、60°B、120°C、60°或120°D、不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC的大小是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•錦州二模)如圖,已知PA、PB是⊙O的兩條切線,A、B是切點,連接OP.
(1)求證:PA=PB;
(2)若⊙O的半徑為2,PA=2
3
,求陰影部分面積.

查看答案和解析>>

同步練習冊答案