【題目】如圖,一塊三角形模具的陰影部分已破損.回答下列問題:

1)只要從模具片中度量出哪些邊、角,就可以到店鋪加工一塊與原來(lái)的模具ABC的形狀和大小完全相同的ABC模具?請(qǐng)簡(jiǎn)要說(shuō)明理由.

2)按尺規(guī)作圖的要求,在框內(nèi)正確作出ABC圖形,保留作圖痕跡,不寫作法和證明.

【答案】(1)詳見解析;(2)詳見解析

【解析】

1)根據(jù)全等三角形的判定定理,當(dāng)已知兩角及夾邊對(duì)應(yīng)相等時(shí),兩個(gè)三角形全等,據(jù)此求解即可.
2)根據(jù)角邊角作△ABC即可.

解:(1)要從模具片中度量出邊BC的長(zhǎng)度、∠B及∠C的大小,就可以到店鋪加工一塊與原來(lái)的模具△ABC的形狀和大小完全相同的△ABC模具.因?yàn)閮山羌皧A邊對(duì)應(yīng)相等的兩個(gè)三角形全等;

2)如圖:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結(jié)論正確的是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(1 ),現(xiàn)將等腰直角三角板直角頂點(diǎn)放在原點(diǎn)O,一個(gè)銳角頂點(diǎn)A在此二次函數(shù)的圖象上,而另一個(gè)銳角頂點(diǎn)B在第二象限,且點(diǎn)A的坐標(biāo)為(2,1.

1)求該二次函數(shù)的表達(dá)式;

2)判斷點(diǎn)B是否在此二次函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)y1x5的圖象與x軸交于點(diǎn)A,一次函數(shù)y2=-2xb的圖象分別與x軸、y軸交于點(diǎn)BC,且與y1x5的圖象交于點(diǎn)Dm,4).

1)求m,b的值;

2)若y1y2,則x的取值范圍是 

3)求四邊形AOCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙、丙、丁四位同學(xué)給出了四種表示該長(zhǎng)方形面積的多項(xiàng)式:

①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你認(rèn)為其中正確的有( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1).x22x2x1;

(2).(x3)2(12x)2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

我們知道方程2x+3y=12有無(wú)數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得y==4-x,(x、y為正整數(shù))

則有0x6

y=4-x為正整數(shù),則x為正整數(shù).

從而x=3,代入y=4-×3=2

2x+3y=12的正整數(shù)解為

利用以上方法解決下列問題:

七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;

(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);

(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:EFAD,∠1=2,∠BAC=70°,求∠AGD的度數(shù).

解:∵EFAD(已知)

∴∠2=_________

∵∠1=2(已知)

∴∠1=__________

DGBA

又∵∠BAC=70°(已知)

∴∠AGD=_________°

查看答案和解析>>

同步練習(xí)冊(cè)答案