如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按照如圖所示的方式放置,點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線y=kx+b(k>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則B3的坐標(biāo)是______.
∵點(diǎn)B1(1,1),B2(3,2),
∴A1(0,1)A2(1,2)A3(3,4),
∴直線y=kx+b(k>0)為y=x+1,
∴Bn的橫坐標(biāo)為An+1的橫坐標(biāo),縱坐標(biāo)為An的縱坐標(biāo)
又An的橫坐標(biāo)數(shù)列為An=2n-1-1,所以縱坐標(biāo)為2n-1,
∴Bn的坐標(biāo)為[A(n+1)的橫坐標(biāo),An的縱坐標(biāo)]=(2n-1,2n-1).
所以B3的坐標(biāo)是(23-1,22),
即(7,4).
故答案為:(7,4).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直線l1y=-
3
x+6
3
交x軸、y軸于A、B兩點(diǎn),點(diǎn)M(m,n)是線段AB上一動(dòng)點(diǎn),點(diǎn)C是線段OA的三等分點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)連接CM,將△ACM繞點(diǎn)M旋轉(zhuǎn)180°,得到△A′C′M.
①當(dāng)BM=
1
2
AM時(shí),連接A′C、AC′,若過原點(diǎn)O的直線l2將四邊形A′CAC′分成面積相等的兩個(gè)四邊形,確定此直線的解析式;
②過點(diǎn)A′作A′H⊥x軸于H,當(dāng)點(diǎn)M的坐標(biāo)為何值時(shí),由點(diǎn)A′、H、C、M構(gòu)成的四邊形為梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-2x+5分別與x、y軸交于點(diǎn)A、B,經(jīng)過點(diǎn)C(-2,0)的直線y=x+b與y軸交于點(diǎn)D,且直線AB、CD交于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo).
(2)點(diǎn)Q(m,n)為線段AB上一點(diǎn)(與點(diǎn)E不重合),QMx軸,交直線CE于點(diǎn)M,設(shè)線段QM的長(zhǎng)為d,寫出d與m的函數(shù)關(guān)系式(直接寫出相應(yīng)m的取值范圍).
(3)在(2)的條件下,點(diǎn)E關(guān)于直線QM的對(duì)稱點(diǎn)為F,當(dāng)BFC=90°時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司試銷一種成本單價(jià)為400元/件的新產(chǎn)品,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件)可近似的看作一次函數(shù)y=kx+b的關(guān)系.
(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式.
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本價(jià))為S元.
①試用銷售單價(jià)x表示毛利潤(rùn)S;
②試問:銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn),最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司到果園基地購(gòu)買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對(duì)購(gòu)買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.
(1)分別寫出該公司兩種購(gòu)買方案的付款y(元)與所購(gòu)買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)依據(jù)購(gòu)買量判斷,選擇哪種購(gòu)買方案付款最少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=kx+4與坐標(biāo)軸圍成的三角形是等腰三角形,則k=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC,∠BAC=90°,AB=AC=4,BD是AC變上的中線,分別以AC、AB所在直線為x軸、y軸建立直角坐標(biāo)系(如圖)
(1)求△ABC的面積;
(2)求直線BD的函數(shù)關(guān)系式;
(3)直線BD上是否存在點(diǎn)M,使△AMC為等腰三角形?若存在,寫出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線y=2x+6與x軸、y軸的交點(diǎn)分別為A、B,又P、Q兩點(diǎn)的坐標(biāo)分別為P(-2,0)、Q(0,k),其中k<6.再以Q點(diǎn)為圓心,PQ長(zhǎng)為半徑作圓,則:
(1)當(dāng)k取何值時(shí),⊙Q與直線相切?
(2)說出k在什么范圍內(nèi)取值時(shí),⊙Q與直線AB相離?相交?(只須寫出結(jié)果,不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

目前,全球淡水資源日益減少,提倡全社會(huì)節(jié)約用水.據(jù)測(cè)試:擰不緊的水龍頭每分鐘滴出100滴水,每滴水約0.05毫升.小康同學(xué)洗手后,沒有把水龍頭擰緊,水龍頭以測(cè)試的速度滴水,當(dāng)小康離開x分鐘后,水龍頭滴出y毫升的水,請(qǐng)寫出y與x之間的函數(shù)關(guān)系式是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案