【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法:①b2﹣4ac=0;②2a+b=0;③若(x1 , y1),(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2;④a﹣b+c<0.其中正確的是( )

A.②④
B.③④
C.②③④
D.①②④

【答案】A
【解析】解:①∵二次函數(shù)與x軸有兩個(gè)交點(diǎn),∴△=b2﹣4ac>0,故①錯(cuò)誤;②∵二次函數(shù)的開(kāi)口向下,∴a<0,∵對(duì)稱(chēng)軸x=1,∴﹣ =1,∴2a+b=0,故②正確;③若(x1 , y1),(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),無(wú)法確定y1與y2的大小,故③錯(cuò)誤;④觀察圖象,當(dāng)x=﹣1時(shí),函數(shù)值y=a﹣b+c<0,故④正確.故選:A.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),菱形OABC的對(duì)角線OB在x軸上,頂點(diǎn)A在反比例函數(shù)y= 的圖像上,則菱形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),若點(diǎn)Q的坐標(biāo)為(x,|x﹣y|),則稱(chēng)點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.
(1)請(qǐng)直接寫(xiě)出點(diǎn)(2,2)的“關(guān)聯(lián)點(diǎn)”的坐標(biāo);
(2)如果點(diǎn)P在函數(shù)y=x﹣1的圖像上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);
(3)如果點(diǎn)M(m,n)的“關(guān)聯(lián)點(diǎn)”N在函數(shù)y=x2的圖像上,當(dāng)0≤m≤2時(shí),求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小正方形的邊長(zhǎng)均為1,則下列圖中的三角形(陰影部分)與△ABC相似的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y1= 與一次函數(shù)y2=k2x+b的圖象交于點(diǎn)A(1,8),B(﹣4,m)兩點(diǎn).
(1)求k1 , k2 , b的值;
(2)求△AOB的面積;
(3)請(qǐng)直接寫(xiě)出不等式 x+b的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),∠PBA=∠C.
(1)求證:PB是⊙O的切線.
(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,且BE∥AC,CE∥BD.

(1)求證:四邊形OBEC是矩形;
(2)若菱形ABCD的周長(zhǎng)是4 ,tanα= ,求四邊形OBEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.

(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明想測(cè)山高和索道的長(zhǎng)度.他在B處仰望山頂A,測(cè)得仰角∠B=31°,再往山的方向(水平方向)前進(jìn)80m至索道口C處,沿索道方向仰望山頂,測(cè)得仰角∠ACE=39°.

(1)求這座山的高度(小明的身高忽略不計(jì));
(2)求索道AC的長(zhǎng)(結(jié)果精確到0.1m).
(參考數(shù)據(jù):tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈

查看答案和解析>>

同步練習(xí)冊(cè)答案