【題目】如圖,在正方形ABCD中,E、F分別是AB、BC上的點(diǎn),且AE=BF.求證:CE=DF.
【答案】證明:在正方形ABCD中,AB=BC=CD,∠B=∠BCD=90°, ∵AE=BF,
∴AB﹣AE=BC﹣BF,
即BE=CF,
在△BCE和△CDF中,
,
∴△BCE≌△CDF(SAS),
∴CE=DF.
【解析】根據(jù)正方形的性質(zhì)可得AB=BC=CD,∠B=∠BCD=90°,然后求出BE=CF,再利用“邊角邊”證明△BCE和△CDF全等,根據(jù)全等三角形對應(yīng)邊相等證明即可.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓直徑,O為圓心,C為半圓上一點(diǎn),E是弧AC的中點(diǎn),OE交弦AC于點(diǎn)D,若AC=8cm,DE=2cm,求OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,點(diǎn)D在線段BC上移動時(shí),直接寫出∠BAD和∠CAE的大小關(guān)系;
(2)如圖②,點(diǎn)D在線段BC的延長線上移動時(shí),猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人到某商店購買A型和B型兩種特惠商品,已知甲、乙兩人購買A型和B型兩種商品的件數(shù)和所花錢的總額如下表所示:
A型商品數(shù)量(件) | B型商品數(shù)量(件) | 總額(元) | |
甲 | 2 | 3 | 43 |
乙 | 3 | 4 | 60 |
(1)試求A型和B型兩種商品的單價(jià)各是多少?
(2)假設(shè)兩人購買商品的件數(shù)相同,且兩人共花去了172元,則甲、乙兩人購買的所有商品中,A型商品共有幾件?B型商品呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的高速公路上依次有3個(gè)標(biāo)志點(diǎn)A、B、C,甲、乙兩車分別從A、C兩點(diǎn)同時(shí)出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示.觀察圖象,給出下列結(jié)論:①A、C之間的路程為690千米;②乙車比甲車每小時(shí)快30千米;③4.5小時(shí)兩車相遇;④點(diǎn)E的橫坐標(biāo)表示兩車第二次相遇的時(shí)間;⑤點(diǎn)E的坐標(biāo)為(7,180)其中正確的有________(把所有正確結(jié)論的序號都填在橫線上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,點(diǎn)D是底邊BC上異于BC中點(diǎn)的一個(gè)點(diǎn),∠ADE=∠DAC,DE=AC.運(yùn)用這個(gè)圖(不添加輔助線)可以說明下列哪一個(gè)命題是假命題?( )
A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形
B.有一組對邊平行的四邊形是梯形
C.一組對邊相等,一組對角相等的四邊形是平行四邊形
D.對角線相等的平行四邊形是矩形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com