【題目】如圖,已知點(diǎn)A1的坐標(biāo)為(0,1),直線(xiàn)1為y=x.過(guò)點(diǎn)A1作A1B1⊥y軸交直線(xiàn)1于點(diǎn)B1,過(guò)點(diǎn)B1作A2B1⊥1交y軸于點(diǎn)A2;過(guò)點(diǎn)A2作A2B2⊥y軸交直線(xiàn)1于點(diǎn)B2,過(guò)點(diǎn)B2作A3B2⊥1交y軸于點(diǎn)A3,……,則AnBn的長(zhǎng)是______.
【答案】2n-1
【解析】
由點(diǎn)A1的坐標(biāo)可得出點(diǎn)B1的坐標(biāo),進(jìn)而可得出A1B1的長(zhǎng),由A2B1⊥1交y軸于點(diǎn)A2結(jié)合直線(xiàn)1為y=x可得出△A1A2B1為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得出點(diǎn)A2的坐標(biāo),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)可得出點(diǎn)B2的坐標(biāo),進(jìn)而可得出A2B2的長(zhǎng),同理,可得出A3B3,A4B4,…的長(zhǎng),再根據(jù)各線(xiàn)段長(zhǎng)度的變化可找出變化規(guī)律“AnBn=2n-1”,此題得解.
解:∵點(diǎn)A1的坐標(biāo)為(0,1),
∴點(diǎn)B1的坐標(biāo)為(1,1),A1B1=1.
∵A2B1⊥1交y軸于點(diǎn)A2,直線(xiàn)1為y=x,
∴△A1A2B1為等腰直角三角形,
∴點(diǎn)A2的坐標(biāo)為(0,2),點(diǎn)B2的坐標(biāo)為(2,2),
∴A2B2=2.
同理,可得:A3B3=4,A4B4=8,…,
∴AnBn=2n-1.
故答案為:2n-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,邊長(zhǎng)為a的正方形發(fā)生形變后成為邊長(zhǎng)為a的菱形,如果這個(gè)菱形的一組對(duì)邊之間的距離為h,我們把的值叫做這個(gè)菱形的“形變度”.例如,當(dāng)形變后的菱形是如圖2形狀(被對(duì)角線(xiàn)BD分成2個(gè)等邊三角形),則這個(gè)菱形的“形變度”為2:.如圖3,正方形由16個(gè)邊長(zhǎng)為1的小正方形組成,形變后成為菱形,△AEF(A、E、F是格點(diǎn))同時(shí)形變?yōu)?/span>△A′E′F′,若這個(gè)菱形的“形變度”k=,則S△A′E′F′=__
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,過(guò)點(diǎn)O的直線(xiàn)EF交AD于點(diǎn)E,交BC于點(diǎn)F.
(1)求證:△AOE≌△COF;
(2)若∠EOD=30°,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線(xiàn)段AB經(jīng)過(guò)圓心O,交⊙O于A、C兩點(diǎn),點(diǎn)D在⊙O上,∠A=∠B=30°.
(1)求證:BD是⊙O的切線(xiàn);
(2)若點(diǎn)N在⊙O上,且DN⊥AB,垂足為M,NC=10,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市環(huán)保局決定購(gòu)買(mǎi)A、B兩種型號(hào)的掃地車(chē)共40輛,對(duì)城區(qū)所有公路地面進(jìn)行清掃.已知1輛A型掃地車(chē)和2輛B型掃地車(chē)每周可以處理地面垃圾100噸,2輛A型掃地車(chē)和1輛B型掃地車(chē)每周可以處理垃圾110噸.
(1)求A、B兩種型號(hào)的掃地車(chē)每輛每周分別可以處理垃圾多少?lài)崳?/span>
(2)已知A型掃地車(chē)每輛價(jià)格為25萬(wàn)元,B型掃地車(chē)每輛價(jià)格為20萬(wàn)元,要想使環(huán)保局購(gòu)買(mǎi)掃地車(chē)的資金不超過(guò)910萬(wàn)元,但每周處理垃圾的量又不低于1400噸,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少?最少資金是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市對(duì)進(jìn)貨價(jià)為10元/千克的某種蘋(píng)果的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)每天銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫(xiě)出x的取值范圍);
(2)應(yīng)怎樣確定銷(xiāo)售價(jià),使該品種蘋(píng)果的每天銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)社會(huì)實(shí)踐小組去某商場(chǎng)調(diào)查商品的銷(xiāo)售情況,了解到該商場(chǎng)以每件80元的價(jià)格購(gòu)進(jìn)了某品牌襯衫500件,并以每件120元的價(jià)格銷(xiāo)售了400件,商場(chǎng)準(zhǔn)備采取促銷(xiāo)措施,將剩下的襯衫降價(jià)銷(xiāo)售.
(1)每件襯衫降價(jià)多少元時(shí),銷(xiāo)售完這批襯衫正好達(dá)到盈利45%的預(yù)期目標(biāo)?
(2)在(1)的條件下,某公司給員工發(fā)福利,在該商場(chǎng)促銷(xiāo)錢(qián)購(gòu)買(mǎi)了20件該品牌的襯衫發(fā)給員工,后因?yàn)橛行聠T工加入,又要購(gòu)買(mǎi)5件該襯衫,購(gòu)買(mǎi)這5件襯衫時(shí)恰好趕上該商場(chǎng)進(jìn)行促銷(xiāo)活動(dòng),求該公司購(gòu)買(mǎi)這25件襯衫的平均價(jià)格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在“數(shù)學(xué)小論文”評(píng)比活動(dòng)中,共征集到論文100篇,對(duì)論文評(píng)比的分?jǐn)?shù)(分?jǐn)?shù)為整數(shù))整理后,分組畫(huà)出頻數(shù)分布直方圖(如圖),已知從左到右5個(gè)小長(zhǎng)方形的高的比為l:3:7:6:3,那么在這次評(píng)比中被評(píng)為優(yōu)秀的論文(分?jǐn)?shù)大于或等于80分為優(yōu)秀)有____篇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(﹣2010)0+﹣2sin60°﹣3tan30°+;
(2)解方程:x2﹣6x+2=0;
(3)已知關(guān)于x的一元二次方程x2﹣mx﹣2=0.
①若﹣1是方程的一個(gè)根,求m的值和方程的另一根;
②證明:對(duì)于任意實(shí)數(shù)m,函數(shù)y=x2﹣mx﹣2的圖象與x軸總有兩個(gè)交點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com