作業(yè)寶已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)數(shù)學(xué)公式的圖象交于A、B兩點(diǎn).已知當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2
(1)求一次函數(shù)的解析式;
(2)已知雙曲線在第一象限上有一點(diǎn)C到y(tǒng)軸的距離為3,求△ABC的面積.

解:(1)∵當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2,
∴點(diǎn)A的橫坐標(biāo)為1,
代入反比例函數(shù)解析式,=y,
解得y=6,
∴點(diǎn)A的坐標(biāo)為(1,6),
又∵點(diǎn)A在一次函數(shù)圖象上,
∴1+m=6,
解得m=5,
∴一次函數(shù)的解析式為y1=x+5;

(2)∵第一象限內(nèi)點(diǎn)C到y(tǒng)軸的距離為3,
∴點(diǎn)C的橫坐標(biāo)為3,
∴y==2,
∴點(diǎn)C的坐標(biāo)為(3,2),
過(guò)點(diǎn)C作CD∥x軸交直線AB于D,
則點(diǎn)D的縱坐標(biāo)為2,
∴x+5=2,
解得x=-3,
∴點(diǎn)D的坐標(biāo)為(-3,2),
∴CD=3-(-3)=3+3=6,
點(diǎn)A到CD的距離為6-2=4,
聯(lián)立,
解得(舍去),,
∴點(diǎn)B的坐標(biāo)為(-6,-1),
∴點(diǎn)B到CD的距離為2-(-1)=2+1=3,
S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.
分析:(1)首先根據(jù)x>1時(shí),y1>y2,0<x<1時(shí),y1<y2確定點(diǎn)A的橫坐標(biāo),然后代入反比例函數(shù)解析式求出點(diǎn)A的縱坐標(biāo),從而得到點(diǎn)A的坐標(biāo),再利用待定系數(shù)法求直線解析式解答;
(2)根據(jù)點(diǎn)C到y(tǒng)軸的距離判斷出點(diǎn)C的橫坐標(biāo),代入反比例函數(shù)解析式求出縱坐標(biāo),從而得到點(diǎn)C的坐標(biāo),過(guò)點(diǎn)C作CD∥x軸交直線AB于D,求出點(diǎn)D的坐標(biāo),然后得到CD的長(zhǎng)度,再聯(lián)立一次函數(shù)與雙曲線解析式求出點(diǎn)B的坐標(biāo),然后△ABC的面積=△ACD的面積+△BCD的面積,列式進(jìn)行計(jì)算即可得解.
點(diǎn)評(píng):本題考查了反比例函數(shù)圖象與一次函數(shù)圖象的交點(diǎn)問(wèn)題,根據(jù)已知條件先判斷出點(diǎn)A的橫坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知一次函數(shù)y1=2x和二次函數(shù)y2=2x2-2x+2;
(1)證明對(duì)任意實(shí)數(shù)x,都有y1≤y2;
(2)求二次函數(shù)y3,其圖象過(guò)點(diǎn)(-1,2),且對(duì)任意實(shí)數(shù)x,都有y1≤y3≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=
kx
的圖象相交于A、B兩點(diǎn),坐標(biāo)分別為(-精英家教網(wǎng)2,4)、(4,-2).
(1)求兩個(gè)函數(shù)的解析式;
(2)結(jié)合圖象寫(xiě)出y1<y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•德陽(yáng))已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2=
6x
的圖象交于A、B兩點(diǎn).已知當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2
(1)求一次函數(shù)的解析式;
(2)已知雙曲線在第一象限上有一點(diǎn)C到y(tǒng)軸的距離為3,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=
kx
的圖象相交于A、B兩點(diǎn),坐標(biāo)分別為(-2,4)、(4,-2).
(1)求兩個(gè)函數(shù)的解析式;
(2)結(jié)合圖象寫(xiě)出y1<y2時(shí),x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知一次函數(shù)y1=kx+b的圖象經(jīng)過(guò)A(1,2)、B(-1,0)兩點(diǎn),y2=mx+n的圖象經(jīng)過(guò)A、C(3,0)兩點(diǎn),則不等式組0<kx+b<mx+n的解集是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案