n棱柱有________條棱,________條側(cè)棱,________個(gè)面,_______個(gè)側(cè)面,_______個(gè)頂點(diǎn).

 

答案:
解析:

3n,n,(n+2)n,2n

 


提示:

棱柱概念.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的面數(shù)(a)和這個(gè)多面體表面展開(kāi)后得到的平面圖形的頂點(diǎn)數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開(kāi)圖,它原有5個(gè)面,展開(kāi)后有10個(gè)頂點(diǎn)(重合的頂點(diǎn)只算一個(gè)),14條棱.

【探索發(fā)現(xiàn)】
(1)請(qǐng)?jiān)趫D2中用實(shí)線畫出立方體的一種表面展開(kāi)圖;
(2)請(qǐng)根據(jù)圖2你所畫的圖和圖3的四棱錐表面展開(kāi)圖填寫下表:
多面體 面數(shù)a 展開(kāi)圖的頂點(diǎn)數(shù)b 展開(kāi)圖的棱數(shù)c
直三棱柱 5 10 14
四棱錐
5
5
8 12
立方體
6
6
14
14
19
19
(3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開(kāi)圖的頂點(diǎn)數(shù)(b)、棱數(shù)(c)之間存在的關(guān)系式是
a+b-c=1
a+b-c=1
;
【解決問(wèn)題】
(4)已知一個(gè)多面體表面展開(kāi)圖有17條棱,且展開(kāi)圖的頂點(diǎn)數(shù)比原多面體的面數(shù)多2,則這個(gè)多面體的面數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正n棱柱,它有18條棱,一條側(cè)棱長(zhǎng)為10cm,一條底面邊長(zhǎng)為5cm.
(1)這是幾棱柱?
(2)此棱柱的側(cè)面積是多少?
(3)過(guò)它一個(gè)底面的某個(gè)頂點(diǎn)連接該底面的其他各頂點(diǎn),可把該底面分成幾個(gè)三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)多面體的面數(shù)(a)和這個(gè)多面體表面展開(kāi)后得到的平面圖形的頂點(diǎn)數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開(kāi)圖,它原有5個(gè)面,展開(kāi)后有10個(gè)頂點(diǎn)(重合的頂點(diǎn)只算一個(gè)),14條棱.

【探索發(fā)現(xiàn)】
(1)請(qǐng)?jiān)趫D2中用實(shí)線畫出立方體的一種表面展開(kāi)圖;
(2)請(qǐng)根據(jù)圖2你所畫的圖和圖3的四棱錐表面展開(kāi)圖填寫下表:
多面體面數(shù)a展開(kāi)圖的頂點(diǎn)數(shù)b展開(kāi)圖的棱數(shù)c
直三棱柱51014
四棱錐______812
立方體__________________
(3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開(kāi)圖的頂點(diǎn)數(shù)(b)、棱數(shù)(c)之間存在的關(guān)系式是______;
【解決問(wèn)題】
(4)已知一個(gè)多面體表面展開(kāi)圖有17條棱,且展開(kāi)圖的頂點(diǎn)數(shù)比原多面體的面數(shù)多2,則這個(gè)多面體的面數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)正n棱柱,它有18條棱,一條側(cè)棱長(zhǎng)為10cm,一條底面邊長(zhǎng)為5cm.
(1)這是幾棱柱?
(2)此棱柱的側(cè)面積是多少?
(3)過(guò)它一個(gè)底面的某個(gè)頂點(diǎn)連接該底面的其他各頂點(diǎn),可把該底面分成幾個(gè)三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案