【題目】如圖,已知中,,厘米,厘米,點(diǎn)為的中點(diǎn).如果點(diǎn)在線段上以每秒2厘米的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上以每秒厘米的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(秒).
(1)用含的代數(shù)式表示的長度;
(2)若點(diǎn)、的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,與是否全等,請說明理由;
(3)若點(diǎn)、的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使與全等?
【答案】(1)6-2t;(2)和全等;(3)厘米/秒.
【解析】
(1)先表示出BP,根據(jù)PC=BC-BP,可得出答案;
(2)根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中的邊的長,根據(jù)SAS判定兩個(gè)三角形全等.
(3)根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時(shí)間公式,先求得點(diǎn)P運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)Q的運(yùn)動(dòng)速度;
(1),則.
(2)和全等
理由:∵秒,
∴厘米,
∴厘米.
∵厘米,點(diǎn)為的中點(diǎn),
∴厘米,
∴.
在和中,,,,
∴≌(SAS).
(3)∵點(diǎn)、的運(yùn)動(dòng)速度不相等,
∴.
又∵≌,,
∴,,
∴點(diǎn),點(diǎn)運(yùn)動(dòng)的時(shí)間秒,
∴厘米/秒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①所示,將繞頂點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角,得到,,分別與、交于點(diǎn)、,與相交于點(diǎn).求證:;
(2)如圖②所示,和是全等的等腰直角三角形,,與、分別交于點(diǎn)、,請說明,,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=kx+m的圖象經(jīng)過二次函數(shù)y=ax2+bx+c的頂點(diǎn),我們則稱這兩個(gè)函數(shù)為“丘比特函數(shù)組”
(1)請判斷一次函數(shù)y=﹣3x+5和二次函數(shù)y=x2﹣4x+5是否為“丘比特函數(shù)組”,并說明理由.
(2)若一次函數(shù)y=x+2和二次函數(shù)y=ax2+bx+c為“丘比特函數(shù)組”,已知二次函數(shù)y=ax2+bx+c頂點(diǎn)在二次函數(shù)y=2x2﹣3x﹣4圖象上并且二次函數(shù)y=ax2+bx+c經(jīng)過一次函數(shù)y=x+2與y軸的交點(diǎn),求二次函數(shù)y=ax2+bx+c的解析式;
(3)當(dāng)﹣3≤x≤﹣1時(shí),二次函數(shù)y=x2﹣2x﹣4的最小值為a,若“丘比特函數(shù)組”中的一次函數(shù)y=2x+3和二次函數(shù)y=ax2+bx+c(b、c為參數(shù))相交于PQ兩點(diǎn)請問PQ的長度為定值嗎?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,作AB⊥MN,垂足為點(diǎn)D,連接AM,AN,點(diǎn)C為弧AN上一點(diǎn).且弧AC=弧AM,連接CM,交AB于點(diǎn)E,交AN于點(diǎn)F,現(xiàn)給出以下結(jié)論:
①AD=BD;②∠MAN=90°;③弧AM =弧BM ;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正確結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
如圖,點(diǎn)E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),在建立的平面直角坐標(biāo)系中,△ABC繞旋轉(zhuǎn)中心P逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C1.
(1)在圖中標(biāo)示出旋轉(zhuǎn)中心P,并寫出它的坐標(biāo);
(2)以原點(diǎn)O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2,在圖中畫出△A2B2C2,并寫出C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,∠ABC=60°,則四邊形EFGH的面積為__cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC就是格點(diǎn)三角形,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C的坐標(biāo)為(0,﹣1).
(1)在如圖的方格紙中把△ABC以點(diǎn)O為位似中心擴(kuò)大,使放大前后的位似比為1:2,畫出△A1B1C1(△ABC與△A1B1C1在位似中心O點(diǎn)的兩側(cè),A,B,C的對應(yīng)點(diǎn)分別是A1,B1,C1).
(2)利用方格紙標(biāo)出△A1B1C1外接圓的圓心P,P點(diǎn)坐標(biāo)是 ,⊙P的半徑= .(保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓的直徑,AC是一條弦,D是AC的中點(diǎn),DE⊥AB于點(diǎn)E且DE交AC于點(diǎn)F,DB交AC于點(diǎn)G,若,則=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com