【題目】如圖,菱形ABCD中,EF⊥AC,垂足為點(diǎn)H,分別交AD、AB及CB的延長線交于點(diǎn)E、M、F,且AE:FB=1:2,則AH:AC的值為( 。
A.B.C.D.
【答案】B
【解析】
連接BD,如圖,利用菱形的性質(zhì)得AC⊥BD,AD=BC,AD∥BC,再證明EF∥BD,接著判斷四邊形BDEF為平行四邊形得到DE=BF,設(shè)AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后證明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性質(zhì)得到AH:AC的值.
解:連接BD,如圖,
∵四邊形ABCD為菱形,
∴AC⊥BD,AD=BC,AD∥BC,
∵EF⊥AC,
∴EF∥BD,
而DE∥BF,
∴四邊形BDEF為平行四邊形,
∴DE=BF,
由AE:FB=1:2,設(shè)AE=x,FB=DE=2x,BC=3x,
∴AE:CF=x:5x=1:5,
∵AE∥CF,
∴△AEH∽△CFH,
∴AH:HC=AE:CF=1:5,
∴AH:AC=1:6.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【閱讀理解】
某科技公司生產(chǎn)一種電子產(chǎn)品,該產(chǎn)品總成本包括技術(shù)成本、制造成本、銷售成本三部分。經(jīng)核算,2016年該產(chǎn)品各部分成本所占比例約為2:a:1,且2016年該產(chǎn)品的技術(shù)成本、制造成本分別為400萬元、1400萬元。
(1)確定a的值,并求2016年產(chǎn)品總成本為多少萬元。
(2)為降低總成本,該公司2017年及2018年增加了技術(shù)投入,確保這兩年技術(shù)成本都比前一年增加一個相同的百分?jǐn)?shù)m(m<50%),制造成本在這兩年里都比前一年減少一個相同的百分?jǐn)?shù)2m;同時為了擴(kuò)大銷售量,2018年的銷售成本將在2016年的基礎(chǔ)上提高10%,經(jīng)過以上變革,預(yù)計2018年該產(chǎn)品總成本達(dá)到2016年該產(chǎn)品總成本的。求m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)械公司經(jīng)銷一種零件,已知這種零件的成本為每件20元,調(diào)查發(fā)現(xiàn)當(dāng)銷售價為24元,平均每天能售出32件,而當(dāng)銷售價每上漲2元,平均每天就少售出4件.
(1)若公司每天的銷售價為x元,則每天的銷售量為多少?
(2)如果物價部門規(guī)定這種零件的銷售價不得高于每件28元,該公司想要每天獲得150元的銷售利潤,銷售價應(yīng)當(dāng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).
⑴求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
⑵判斷△ABC的形狀,證明你的結(jié)論;
⑶點(diǎn)M(m,0)是x軸上的一個動點(diǎn),當(dāng)CM+DM的值最小時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的動點(diǎn)和圖形,給出如下定義:如果為圖形上一個動點(diǎn),,兩點(diǎn)間距離的最大值為,,兩點(diǎn)間距離的最小值為,我們把的值叫點(diǎn)和圖形間的“和距離”,記作(,圖形).
(1)如圖,正方形的中心為點(diǎn),.
①點(diǎn)到線段的“和距離”(,線段)=______;
②設(shè)該正方形與軸交于點(diǎn)和,點(diǎn)在線段上,(,正方形)=7,求點(diǎn)的坐標(biāo).
(2)如圖2,在(1)的條件下,過,兩點(diǎn)作射線,連接,點(diǎn)是射線上的一個動點(diǎn),如果(,線段),直接寫出點(diǎn)橫坐標(biāo)取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知OA=10cm,OB=5cm,點(diǎn)P從點(diǎn)O開始沿OA邊向點(diǎn)A以2cm/s的速度移動;點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O以1cm/s的速度移動.如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤5),
(1)用含t的代數(shù)式表示:線段PO= cm;OQ= cm.
(2)當(dāng)t為何值時,四邊形PABQ的面積為19cm2.
(3)當(dāng)△POQ與△AOB相似時,求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若P和Q兩點(diǎn)關(guān)于原點(diǎn)對稱,則稱點(diǎn)P與點(diǎn)Q是一個“和諧點(diǎn)對”,表示為[P,Q],比如[P(1,2),Q(﹣1,﹣2)]是一個“和諧點(diǎn)對”.
(1)寫出反比例函數(shù)y=圖象上的一個“和諧點(diǎn)對”;
(2)已知二次函數(shù)y=x2+mx+n,
①若此函數(shù)圖象上存在一個和諧點(diǎn)對[A,B],其中點(diǎn)A的坐標(biāo)為(2,4),求m,n的值;
②在①的條件下,在y軸上取一點(diǎn)M(0,b),當(dāng)∠AMB為銳角時,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)求證:DF為⊙O的切線;
(2)求證:F為CE的中點(diǎn);
(3)若⊙O的半徑為3,∠CDF=22.5°,求陰影部分的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程M為ax2+bx+c=0、N為cx2+bx+a=0(a≠c),則下列結(jié)論:①如果5是方程M的一個根,那么是方程N的一個根;②如果方程M有兩個不相等的實(shí)數(shù)根,那么方程N也有兩個不相等的實(shí)數(shù)根;③如果方程M與方程N有一個相同的根,那么這個根必是x=1.其中正確的結(jié)論是( 。
A.①②B.①③C.②③D.①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com