【題目】一張半徑為2的半圓圖紙沿它的一條弦折疊,使其弧與直徑相切,如圖所示,O為半圓圓心,如果切點(diǎn)分直徑之比為3:1,則折痕長(zhǎng)為( )
A. 3 B. C. D. 2
【答案】C
【解析】
過(guò)O作弦BC的垂線OP,垂足為D,分別與弧的交點(diǎn)為A、G,過(guò)切點(diǎn)F作PF⊥半徑OE交OP于P點(diǎn),根據(jù)垂徑定理及其推論得到BD=DC,即OP為BC的中垂線,OP必過(guò)弧BGC所在圓的圓心,再根據(jù)切線的性質(zhì)得到PF必過(guò)弧BGC所在圓的圓心,則點(diǎn)P為弧BGC所在圓的圓心,根據(jù)折疊的性質(zhì)有⊙P為半徑等于⊙O的半徑,即PF=PG=OE=2,并且AD=GD,由F點(diǎn)分⊙O的直徑為3:1兩部分可計(jì)算出OF=1,在Rt△OPF中,設(shè)OG=x,利用勾股定理可計(jì)算出x,則由AG=PG-AP計(jì)算出AG,可得到DG的長(zhǎng),于是可計(jì)算出OD的長(zhǎng),在Rt△OBD中,利用勾股定理計(jì)算BD,即可得到BC的長(zhǎng).
過(guò)O作弦BC的垂線OP,垂足為D,分別與弧的交點(diǎn)為A、G,過(guò)切點(diǎn)F作PF⊥半徑OE交OP于P點(diǎn),如圖,
∵OP⊥BC,
∴BD=DC,即OP為BC的中垂線,
∴OP必過(guò)弧BGC所在圓的圓心,
又∵OE為弧BGC所在圓的切線,PF⊥OE,
∴PF必過(guò)弧BGC所在圓的圓心,
∴點(diǎn)P為弧BGC所在圓的圓心,
∵弧BAC沿BC折疊得到弧BGC,
∴⊙P為半徑等于⊙O的半徑,即PF=PG=OE=2,并且AD=GD,
∴OG=AP,
而F點(diǎn)分⊙O的直徑為3:1兩部分,
∴OF=1,
在Rt△OPF中,設(shè)OG=x,則OP=x+2,
∴OP2=OF2+PF2,即(x+2)2=12+22,解得x=-2,
∴AG=2-(-2)=4-,
∴DG=,
∴OD=OG+DG=-2+2-=,
在Rt△OBD中,BD2=OB2+OD2,即BD2=22-()2,
∴BD=,
∴BC=2BD=.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點(diǎn)E在DC上,AE,BC的延長(zhǎng)線相交于點(diǎn)F,若AE=10,則S△ADE+S△CEF的值是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過(guò)O,A兩點(diǎn),且頂點(diǎn)在BC邊上,點(diǎn)E的坐標(biāo)分別為(0,1),對(duì)稱軸交BE于點(diǎn)F.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)M在對(duì)稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請(qǐng)問(wèn)是否存在以點(diǎn)A,F,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=4,點(diǎn)D是AC邊上的一個(gè)動(dòng)點(diǎn),將△ABD沿BD所在直線折疊,使點(diǎn)A落在P處.
(1)如圖1,若點(diǎn)D是AC中點(diǎn),連接PC.
①求AC的長(zhǎng);
②試猜想四邊形BCPD的形狀,并加以證明;
(2)如圖2,若BD=AD,過(guò)點(diǎn)P作PH⊥BC交BC的延長(zhǎng)線于點(diǎn)H,求CH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某藥品的療效,現(xiàn)選取若干名志愿者進(jìn)行臨床試驗(yàn).所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組、第二組、…、第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.
(1)若第一組接受治療的志愿者有12人,則第三組接受治療的志愿者有多少人?
(2)若接受治療的志愿者共有50人,規(guī)定舒張壓在14kpa以上的志愿者接受進(jìn)一步的臨床試驗(yàn),若從三組志愿者中按比例分配20張床位,則舒張壓數(shù)據(jù)在[14,15)的志愿者總共可以得到多少?gòu)埓参唬?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)兩點(diǎn).
(1)請(qǐng)求出拋物線的解析式;
(2)當(dāng)0<x<4時(shí),請(qǐng)直接寫(xiě)出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家銷售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷售40件,每銷售一件需支付給商場(chǎng)管理費(fèi)5元,未來(lái)一個(gè)月按30天計(jì)算,這款商品將開(kāi)展“每天降價(jià)1元”的促銷活動(dòng),即從第一天開(kāi)始每天的單價(jià)均比前一天降低1元,通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷售量增加2件,設(shè)第x天且x為整數(shù)的銷售量為y件.
直接寫(xiě)出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤(rùn)為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4). 點(diǎn)從 出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng);點(diǎn)從同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)作垂直軸于點(diǎn),連結(jié)AC交NP于Q,連結(jié)MQ.
【1】點(diǎn) (填M或N)能到達(dá)終點(diǎn);
【1】求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
【1】是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo),若不存在,
說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com