二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于A點.
(1)根據(jù)圖象確定a、b、c的符號,并說明理由;
(2)如果點A的坐標為(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)的解析式.
(1)∵拋物線開口向上
∴a>0
又∵對稱軸在y軸的左側(cè)
b
-2a
<0,
∴b>0
又∵拋物線交y軸的負半軸
∴c<0

(2)連接AB,AC
∵在Rt△AOB中,∠ABO=45°
∴∠OAB=45°,
∴OB=OA
∴B(-3,0)
又∵在Rt△ACO中,∠ACO=60°
∴OC=OAcot=60°=
3

∴C(
3
,0)
設二次函數(shù)的解析式為y=ax2+bx+c(a≠0)
由題意:
9a-3b+c=0
3a+
3
b+c=0
c=-3
?
a=
3
3
b=
3
-1
c=-3

∴所求二次函數(shù)的解析式為y=
3
3
x2+(
3
-1)x-3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一元二次方程x2+2x-3=0的兩根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點C,B的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點G,則P點坐標為______,G點坐標為______;
(3)在x軸上有一動點M,當MG+MA取得最小值時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直),(如圖)如果拋物線的最高點M離墻1米,離地面
40
3
米,則水流下落點B離墻距離OB是( 。
A.2米B.3米C.4米D.5米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+bx+c與y軸交于點C,與x軸相交于A,B兩點,點A的坐標為(2,0),點C的坐標為(0,-4).
(1)求拋物線的解析式;
(2)點Q是線段OB上的動點,過點Q作QEBC,交AC于點E,連接CQ,設OQ=m,當△CQE的面積最大時,求m的值,并寫出點Q的坐標;
(3)若平行于x軸的動直線,與該拋物線交于點P,與直線BC交于點F,D的坐標為(-2,0),則是否存在這樣的直線l,使OD=DF?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設拋物線頂點為D,求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店購進一批單價為8元的商品,如果按每件10元出,那么每天可銷售100件,經(jīng)調(diào)查發(fā)現(xiàn),這種商品的銷售單價每提高1元,其銷售量相應減少10件.將銷售價定為多少,才能使每天所獲銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=
1
2
x2+bx-
3
2
的圖象與x軸交于點A(-3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)請直接寫出點D的坐標:______;
(2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示是二次函數(shù)y=-x2+4x圖象上的一段,其中0≤x≤4、若矩形ABCD的兩個頂點A,B落在x軸上,另外兩個頂點C,D落在函數(shù)圖象上,則矩形ABCD的周長能否恰好為8?若能,請求出C,D兩點坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B,若點C在拋物線的對稱軸上,點D在拋物線上,且以O,C,D,B四點為頂點的四邊形為平行四邊形,則D點的坐標為______.

查看答案和解析>>

同步練習冊答案