【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF.求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形.試探究:當∠B與∠EGC滿足什么關系時,使得成立?并證明你的結(jié)論;
(3)如圖③,若BA=BC=9,DA=DC=12,∠BAD=90°,DE⊥CF.求出的值.
【答案】(1)證明見解析;(2)∠B+∠EGC=180°,證明見解析;(3).
【解析】試題分析:(1)根據(jù)矩形性質(zhì)得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可;
(2)當∠B+∠EGC=180°時, 成立,證△DFG∽△DEA,得出,證△CGD∽△CDF,得出,即可得出答案;
(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x-6)2+(x)2=62,求出CN=,證出△AED∽△NFC,即可得出答案.
試題解析:(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠DGF=90°,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴;
(2)當∠B+∠EGC=180°時, 成立.
證明:∵四邊形ABCD是平行四邊形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
∴,
∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,
∴∠CGD=∠CDF,
∵∠GCD=∠DCF,
∴△CGD∽△CDF,
∴,
∴,
∴,
即當∠B+∠EGC=180°時, 成立.
(3).
理由是:過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,
∵∠BAD=90°,即AB⊥AD,
∴∠A=∠M=∠CNA=90°,
∴四邊形AMCN是矩形,
∴AM=CN,AN=CM,
∵在△BAD和△BCD中
∴△BAD≌△BCD(SSS),
∴∠BCD=∠A=90°,
∴∠ABC+∠ADC=180°,
∵∠ABC+∠CBM=180°,
∴∠MBC=∠ADC,
∵∠CND=∠M=90°,
∴△BCM∽△DCN,
∴,
∴,
∴CM=x,
在Rt△CMB中,CM=x,BM=AM-AB=x-9,
由勾股定理得:BM2+CM2=BC2,
∴(x-6)2+(x)2=62,
x=0(舍去),x=,
CN=,
∵∠A=∠FGD=90°,
∴∠AED+∠AFG=180°,
∵∠AFG+∠NFC=180°,
∴∠AED=∠CFN,
∵∠A=∠CNF=90°,
∴△AED∽△NFC,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A=∠D,試說明 AC∥DE 成立的理由.
(下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整.)
解:∵AB∥CD (已知)
∴∠A=(兩直線平行,內(nèi)錯角相等)
又∵∠A=∠D()
∴ =(等量代換)
∴AC∥DE ()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E,F(xiàn),過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF,OD,OP之間的等量關系,并加以證明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關系不正確的是( )
A.若a﹣5>b﹣5,則a>b
B.若x2>1,則x>
C.若2a>﹣2b,則a>﹣b
D.若a>b,c>d,則a+c>b+d
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點C,S△ABO=4,tan∠BAO=2,則k的值為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com