如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(﹣2,0)和點C(0,﹣8).

(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為   ;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設(shè)P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.
(1);(2)(,0);(3)①不存在,理由見試題解析;②;③

試題分析:(1)根據(jù)已知的與x軸的兩個交點坐標和經(jīng)過的一點利用交點式求二次函數(shù)的解析式即可;
(2)首先根據(jù)上題求得的函數(shù)的解析式確定頂點坐標,然后求得點C關(guān)于x軸的對稱點的坐標C′,從而求得直線C′M的解析式,求得與x軸的交點坐標即可;
(3)(3)①如果DE∥OC,此時點D,E應(yīng)分別在線段OA,CA上,先求出這個區(qū)間t的取值范圍,然后根據(jù)平行線分線段成比例定理,求出此時t的值,然后看t的值是否符合此種情況下t的取值范圍.如果符合則這個t的值就是所求的值,如果不符合,那么就說明不存在這樣的t.
②本題要分三種情況進行討論:當E在OC上,D在OA上,即當時,此時S=OE•OD,由此可得出關(guān)于S,t的函數(shù)關(guān)系式;
當E在CA上,D在OA上,即當時,此時S=OD×E點的縱坐標.由此可得出關(guān)于S,t的函數(shù)關(guān)系式;
當E,D都在CA上時,即當相遇時用的時間,此時S=SAOE﹣SAOD,由此可得出S,t的函數(shù)關(guān)系式;
綜上所述,可得出不同的t的取值范圍內(nèi),函數(shù)的不同表達式.
③根據(jù)②的函數(shù)即可得出S的最大值.
試題解析:(1)設(shè)二次函數(shù)的解析式為,∵圖象過點(0,﹣8),∴,∴二次函數(shù)的解析式為;
(2)∵=,∴點M的坐標為(2,),∵點C的坐標為(0,),∴點C關(guān)于x軸對稱的點C′的坐標為(0,8),∴直線C′M的解析式為:,令,得,解得:,∴點K的坐標為(,0);
(3)①不存在PQ∥OC,
若PQ∥OC,則點P,Q分別在線段OA,CA上,此時,,∵PQ∥OC,∴△APQ∽△AOC,∴,∵AP=,AQ=,∴,∴,∵>2不滿足;∴不存在PQ∥OC;
②分情況討論如下,
情況1:

S=OP•OQ=;
情況2:
作QE⊥OA,垂足為E,S=OP•EQ=,
情況3:,
作OF⊥AC,垂足為F,則OF=,S=QP•OF=;
;
③當時,,函數(shù)的最大值是12;
時,,函數(shù)的最大值是;
,函數(shù)的最大值為;
∴S0的值為
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線向下平移2個單位再向右平移3個單位,所得拋物線的表達式是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,點A(0,10),C(8,0).沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以O(shè)C, OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線經(jīng)過O,D,C三點.

(1)求D的的坐標及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連結(jié)BC、AD.

(1)求C點的坐標及拋物線的解析式;(6分)
(2)將△BCH繞點B按順時針旋轉(zhuǎn)90°后再沿x軸對折得到△BEF(點C與點E對應(yīng)),判斷點E是否落在拋物線上,并說明理由;(4分)
(3)設(shè)過點E的直線交AB邊于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由. (4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點A (2,4) 和點B (1,0)都在拋物線上.

(1)求m、n;
(2)向右平移上述拋物線,記平移后點A的對應(yīng)點為A′,點B的對應(yīng)點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點為C,試在x軸上找一個點D,使得以點B′、C、D為頂點的三角形與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與直線交于點.點是拋物線上,之間的一個動點,過點分別作軸、軸的平行線與直線交于點

(1)求拋物線的函數(shù)解析式;
(2)若點的橫坐標為2,求的長;
(3)以,為邊構(gòu)造矩形,設(shè)點的坐標為,求出之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知(-3,m)、(1,m)是拋物線y=2x2+bx+3的兩點,則b=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的兩個根,則實數(shù)x1,x2,a,b的大小關(guān)系為(    )
A.x1<x2<a<bB.x1<a<x2<bC.x1<a<b<x2D.a(chǎn)<x1<b<x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形紙片ABCD中,BC=4,AB=3,點P是BC邊上的動點(點P不與點B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分線,交AB于點E.設(shè)BP=" x,BE=" y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(      )

A、 B、  C、 D、

查看答案和解析>>

同步練習冊答案