【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬(wàn)元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬(wàn)元時(shí),年銷(xiāo)售量為600臺(tái);每臺(tái)售價(jià)為45萬(wàn)元時(shí),年銷(xiāo)售量為550臺(tái).假定該設(shè)備的年銷(xiāo)售量y(單位:臺(tái))和銷(xiāo)售單價(jià)(單位:萬(wàn)元)成一次函數(shù)關(guān)系.
(1)求年銷(xiāo)售量與銷(xiāo)售單價(jià)的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷(xiāo)售單價(jià)不得高于70萬(wàn)元,如果該公司想獲得10000萬(wàn)元的年利潤(rùn).則該設(shè)備的銷(xiāo)售單價(jià)應(yīng)是多少萬(wàn)元?
【答案】(1);(2)該公可若想獲得10000萬(wàn)元的年利潤(rùn),此設(shè)備的銷(xiāo)售單價(jià)應(yīng)是50萬(wàn)元.
【解析】(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出年銷(xiāo)售量y與銷(xiāo)售單價(jià)x的函數(shù)關(guān)系式;
(2)設(shè)此設(shè)備的銷(xiāo)售單價(jià)為x萬(wàn)元/臺(tái),則每臺(tái)設(shè)備的利潤(rùn)為(x﹣30)萬(wàn)元,銷(xiāo)售數(shù)量為(﹣10x+1000)臺(tái),根據(jù)總利潤(rùn)=單臺(tái)利潤(rùn)×銷(xiāo)售數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其小于70的值即可得出結(jié)論.
(1)設(shè)年銷(xiāo)售量y與銷(xiāo)售單價(jià)x的函數(shù)關(guān)系式為y=kx+b(k≠0),將(40,600)、(45,550)代入y=kx+b,得:
,
解得:,
∴年銷(xiāo)售量y與銷(xiāo)售單價(jià)x的函數(shù)關(guān)系式為y=﹣10x+1000.
(2)設(shè)此設(shè)備的銷(xiāo)售單價(jià)為x萬(wàn)元/臺(tái),則每臺(tái)設(shè)備的利潤(rùn)為(x﹣30)萬(wàn)元,銷(xiāo)售數(shù)量為(﹣10x+1000)臺(tái),根據(jù)題意得:
(x﹣30)(﹣10x+1000)=10000,
整理,得:x2﹣130x+4000=0,
解得:x1=50,x2=80.
∵此設(shè)備的銷(xiāo)售單價(jià)不得高于70萬(wàn)元,∴x=50.
答:該設(shè)備的銷(xiāo)售單價(jià)應(yīng)是50萬(wàn)元/臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,點(diǎn)C在⊙O上,CB∥PO.
(1)判斷PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=6,CB=4,求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車(chē)行駛時(shí)的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫(xiě)出汽車(chē)行駛400千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量;
(2)求關(guān)于的函數(shù)關(guān)系式,并計(jì)算該汽車(chē)在剩余油量5升時(shí),已行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在數(shù)軸上有A 、B、C三個(gè)點(diǎn),點(diǎn)A表示的數(shù)是-4,點(diǎn)B表示的數(shù)是-2,點(diǎn)C表示的數(shù)是2.
(1)在數(shù)軸上把A 、B、C三點(diǎn)表示出來(lái),并比較各數(shù)的大。ㄓ谩<”連接);
(2)如何移動(dòng)點(diǎn)B,使它到點(diǎn)A和點(diǎn)C的距離相等 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(背最資料)
低碳生活的理念已逐步被人們所接受,據(jù)有關(guān)資料統(tǒng)計(jì),一個(gè)人平均一年節(jié)約的用電相當(dāng)于減排二氧化碳約18kg;一個(gè)人平均一年少買(mǎi)的衣服,相當(dāng)于減排二氧化碳6kg.
(問(wèn)題解決)
甲校對(duì)本校師生提出“節(jié)約用電”的倡議,乙校對(duì)本校師生提出“少買(mǎi)衣服”的倡議,2017年兩校響應(yīng)本校倡議的共有1000人,因此而減排二氧化碳總量約13200kg.問(wèn):2017年甲、乙兩校響應(yīng)倡議的人數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】再讀教材:
寬與長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱(chēng)的美感.世界各國(guó)許多著名的建筑.為取得最佳的視覺(jué)效果,都采用了黃金矩形的設(shè)計(jì),下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個(gè)正方形,然后把紙片展平.
第二步,如圖②.把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對(duì)角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點(diǎn)D折出 DE,使 DE⊥ND,則圖④中就會(huì)出現(xiàn)黃金矩形,
問(wèn)題解決:
(1)圖③中AB=________(保留根號(hào));
(2)如圖③,判斷四邊形 BADQ的形狀,并說(shuō)明理由;
(3)請(qǐng)寫(xiě)出圖④中所有的黃金矩形,并選擇其中一個(gè)說(shuō)明理由.
(4)結(jié)合圖④.請(qǐng)?jiān)诰匦?/span> BCDE中添加一條線段,設(shè)計(jì)一個(gè)新的黃金矩形,用字母表示出來(lái),并寫(xiě)出它的長(zhǎng)和寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點(diǎn)80米處有一所學(xué)校A.當(dāng)重型運(yùn)輸卡車(chē)P沿道路ON方向行駛時(shí),在以P為圓心50米長(zhǎng)為半徑的圓形區(qū)域內(nèi)都會(huì)受到卡車(chē)噪聲的影響,且卡車(chē)P與學(xué)校A的距離越近噪聲影響越大.若一直重型運(yùn)輸卡車(chē)P沿道路ON方向行駛的速度為18千米/時(shí).
(1)求對(duì)學(xué)校A的噪聲影響最大時(shí)卡車(chē)P與學(xué)校A的距離;
(2)求卡車(chē)P沿道路ON方向行駛一次給學(xué)校A帶來(lái)噪聲影響的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店中銷(xiāo)售水果時(shí)采用了三種組合搭配的方式進(jìn)行銷(xiāo)售,甲種搭配是:2千克A水果,4千克B水果;乙種搭配是:3千克A水果,8千克B水果,1千克C水果;丙種搭配是:2千克A水果,6千克B水果,1千克C水果;如果A水果每千克售價(jià)為2元,B水果每千克售價(jià)為1.2元,C水果每千克售價(jià)為10元,某天,商店采用三種組合搭配的方式進(jìn)行銷(xiāo)售后共得銷(xiāo)售額441.2元,并且A水果銷(xiāo)售額116元,那么C水果的銷(xiāo)售額是______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,BC∥OA,∠B=∠A=108°,試解答下列問(wèn)題:
(1)如圖1所示,則∠O= °,并判斷OB與AC平行嗎?為什么?
(2)如圖2,若點(diǎn)E、F在線段BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于 °;
(3)在第(2)題的條件下,若平行移動(dòng)AC,如圖3.
①求∠OCB:∠OFB的值;
②當(dāng)∠OEB=∠OCA時(shí),求∠OCA的度數(shù)(直接寫(xiě)出答案,不必寫(xiě)出解答過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com