【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,AB∥DC,AB=BC,BD平分∠ABC,過點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=2,BD=4,求OE的長(zhǎng).
【答案】(1)見解析;(2)4
【解析】
(1)由平行線性質(zhì)和角平分線性質(zhì)易證明,BC=CD,因?yàn)?/span>AB∥CD且AB=BC,即可證明.
(2)直角三角形斜邊的中線是斜邊的一半,所以OE=OA=OC,菱形角平分線相互垂直平分,用勾股定理即可算出OC的長(zhǎng).
(1)∵AB∥CD,
∴∠ABD=∠CDB,
∵BD平分∠ABC,
∴∠ABD=∠CBD
∴∠CDB=∠CBD,
∴BC=CD,且AB=BC
∴CD=AB,且AB∥CD
∴四邊形ABCD是平行四邊形,且AB=BC
∴四邊形ABCD是菱形;
(2)∵四邊形ABCD是菱形,
∴OA=OC,BD⊥AC,BO=DO=2
∵AO= ==4
∵CE⊥AB,AO=CO
∴EO=AO=CO=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思維,觀察下面的圖形和算式:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9═25=52
解答下列問題:請(qǐng)用上面得到的規(guī)律計(jì)算:1+3+7+……+101=( 。
A.2601B.2501C.2400D.2419
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過兩點(diǎn)且與x軸的負(fù)半軸交于點(diǎn).
求該拋物線的解析式;
若點(diǎn)為直線上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
已知分別是直線和拋物線上的動(dòng)點(diǎn),當(dāng)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線與x軸相交于A、B兩點(diǎn)(A左B右),與y軸交于點(diǎn)C.其頂點(diǎn)為D.
(1)求點(diǎn)D的坐標(biāo)和直線BC對(duì)應(yīng)的一次函數(shù)關(guān)系式;
(2)若正方形PQMN的一邊PQ在線段AB上,另兩個(gè)頂點(diǎn)M、N分別在BC、AC上,試求M、N兩點(diǎn)的坐標(biāo);
(3)如圖1,E是線段BC上的動(dòng)點(diǎn),過點(diǎn)E作DE的垂線交BD于點(diǎn)F,求DF的最小值.
(圖1) (圖2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長(zhǎng)為的等邊三角形.將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點(diǎn)O.
(1)如圖a,當(dāng)θ=20°時(shí),判斷△ABD與△ACE是否全等?并說明理由;
(2)當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí)(60°<θ<120°),求∠BOE的度數(shù);
(3)在θ從60°到120°的旋轉(zhuǎn)過程中,點(diǎn)O運(yùn)動(dòng)的軌跡長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A點(diǎn),D點(diǎn)分別在x軸、y軸上,對(duì)角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過矩形對(duì)角線的交點(diǎn)E,若點(diǎn)A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,BC=12,點(diǎn)D是BC上一點(diǎn),DE∥AC,DF∥AB,則△BED與△DFC的周長(zhǎng)的和為( 。
A. 34B. 32C. 22D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在矩形中,,分別是邊,上的點(diǎn),過點(diǎn)作的垂線交于點(diǎn),以為直徑作半圓.
(1)填空:點(diǎn)_____________(填“在”或“不在”)上;當(dāng)時(shí),的值是_____________;
(2)如圖1,在中,當(dāng)時(shí),求證:;
(3)如圖2,當(dāng)的頂點(diǎn)是邊的中點(diǎn)時(shí),請(qǐng)直接寫出三條線段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),且.直線與拋物線交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn),設(shè)直線上方的拋物線上的動(dòng)點(diǎn)的橫坐標(biāo)為.
(1)連接,求證:四邊形是平行四邊形;
(2)連接,,當(dāng)為何值時(shí)?
(3)在直線上是否存在一點(diǎn),使為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com