【題目】補全下列各題解題過程.
如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數.
解:∵EF∥AD ( 已知 )
∴∠2 = ( )
又∵∠1=∠2 ( )
∴∠1=∠3 ( )
∴AB∥ ( )
∴∠BAC + = 180°( )
∵∠BAC = 70°(已知 )
∴∠AGD = _ .
科目:初中數學 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.
原題:如圖①,點分別在正方形的邊上, ,連接,則,試說明理由.
(1)思路梳理
因為,所以把繞點逆時針旋轉90°至,可使與 重合.因為,所以,點共線.
根據 ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中, , ,點分別在邊上, .若都不是直角,則當與滿足等量關系時, 仍然成立,請證明.
(3)聯(lián)想拓展
如圖③,在中, ,點均在邊上,且.猜想應滿足的等量關系,并寫出證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y=2x-5與x軸和y軸分別交于點A和點B,點C(1,n)在直線AB上,點D在y軸的負半軸上,且CD=.
(1)求點C、點D的坐標.
(2)若P為y軸上的點,當△PCD為等腰三角形時,求點P的坐標.
(3)若點M為x軸上一動點(點M不與點O重合),N為直線y=2x-5上一動點,是否存在點M、N,使得△AMN與△AOB全等?若存在,求出點N的坐標;若不存在,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點三角形ABC(頂點是網格線的交點)
(1)先將△ABC豎直向上平移5個單位,再水平向右平移4個單位得到△A1B1C1,請畫出△A1B1C1;
(2)將△A1B1C1繞B1點順時針旋轉90°,得△A2B1C2,請畫出△A2B1C2;
(3)求線段B1C1變換到B1C2的過程中掃過區(qū)域的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.
(1)通過計算,判斷AD2與ACCD的大小關系;
(2)求∠ABD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】校園安全與每個師生、家長和社會有著切身的關系.某校教學樓共五層,設有左、右兩個樓梯口,通常在放學時,若持續(xù)不正常,會導致等待通過的人較多,發(fā)生擁堵,從而出現(xiàn)不安全因素.通過觀察發(fā)現(xiàn)位于教學樓二、三樓的七年級學生從放學時刻起,經過單個樓梯口等待人數按每分鐘12人遞增,6分鐘后經過單個樓梯口等待人數按每分鐘12人遞減;位于四、五樓的八年級學生從放學時刻起,經過單個樓梯口等待人數y2與時間為t(分)滿足關系式y(tǒng)2=﹣4t2+48t﹣96(0≤t≤12).若在單個樓梯口等待人數超過80人,就會出現(xiàn)安全隱患.
(1)試寫出七年級學生在單個樓梯口等待的人數y1(人)和從放學時刻起的時間t(分)之間的函數關系式,并指出t的取值范圍.
(2)若七、八年級學生同時放學,試計算等待人數超過80人所持續(xù)的時間.
(3)為了避免出現(xiàn)安全隱患,該校采取讓七年級學生提前放學措施,要使單個樓梯口等待人數不超過80人,則七年級學生至少比八年級提前幾分鐘放學?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A(2,0),B(2,4),定義:若平面內點P關于直線AB的對稱點Q在圖形M內或圖形的邊界上,則稱點P是圖形M關于直線AB的“反稱點”.
(1)已知C(5,0),D(5,3)
①點M1(0,3),M2(-0. 5,2),M3(-2,1),則是△ACD關于直線AB的“反稱點”的是________:
②若直線y=2x+m上存在△ACD關于直線AB的“反稱點”,求m的取值范圍;
(2)已知點E(1,0),F(5,0), ,點P(x,y)在直線y=x+1上,且點P是△EFG的反稱點,求點P橫坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0).C(0,3),點M是拋物線的頂點.
(1)求二次函數的關系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com