【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E、F分別是BC,CD邊上的動(dòng)點(diǎn),且CE+CF=4,DE和AF相交于點(diǎn)P,在點(diǎn)E,F運(yùn)動(dòng)的過程中,CP的最小值為_____.
【答案】2﹣2
【解析】
根據(jù)正方形的性質(zhì)得到AD=CD=BC=4,∠ADC=∠BCD=90°,求得CE=DF,根據(jù)全等三角形的性質(zhì)得到∠DAF=∠CDE,推出∠APD=90°,得到點(diǎn)P在以AD為直徑的圓上,設(shè)AD的中點(diǎn)為G,由圖形可知:當(dāng)C、P、G在同一直線上時(shí),CP有最小值,如圖所示:根據(jù)勾股定理即可得到結(jié)論.
解:在正方形ABCD中,AD=CD=BC=4,∠ADC=∠BCD=90°,
∵CE+CF=4,CF+DF=4,
∴CE=DF,
在△ADF和△DCE中,
,
∴△ADF≌△DCE(SAS),
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=90°,
∴∠DAP+∠FDP=90°,
∴∠APD=90°,
∴點(diǎn)P在以AD為直徑的圓上,
設(shè)AD的中點(diǎn)為G,
由圖形可知:當(dāng)C、P、G在同一直線上時(shí),CP有最小值,如圖所示:
∵CD=4,DG=2,
∴CG==2
∴CP=CG﹣PG=2﹣2,
故答案為:2﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片中,,將紙片折疊,點(diǎn)分別落在點(diǎn)處,且經(jīng)過點(diǎn)為折痕,當(dāng)時(shí),的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF.其中正確的結(jié)論有( )個(gè)
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加西部博覽會(huì),資陽市計(jì)劃印制一批宣傳冊(cè).該宣傳冊(cè)每本共10頁,由A、B兩種彩頁構(gòu)成.已知A種彩頁制版費(fèi)300元/張,B種彩頁制版費(fèi)200元/張,共計(jì)2400元.(注:彩頁制版費(fèi)與印數(shù)無關(guān))
(1)每本宣傳冊(cè)A、B兩種彩頁各有多少張?
(2)據(jù)了解,A種彩頁印刷費(fèi)2.5元/張,B種彩頁印刷費(fèi)1.5元/張,這批宣傳冊(cè)的制版費(fèi)與印刷費(fèi)的和不超過30900元.如果按到資陽展臺(tái)處的參觀者人手一冊(cè)發(fā)放宣傳冊(cè),預(yù)計(jì)最多能發(fā)給多少位參觀者?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“陽光體育”活動(dòng)時(shí)間,小英、小麗、小敏、小潔四位同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)若已確定小英打第一場,再從其余三位同學(xué)中隨機(jī)選取一位,求恰好選中小麗同學(xué)的概率;
(2)用畫樹狀圖或列表的方法,求恰好選中小敏、小潔兩位同學(xué)進(jìn)行比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,中,為內(nèi)一點(diǎn),將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn),且三點(diǎn)在同一直線上.
(1)填空: (用含的代數(shù)式表示);
(2)如圖2,若,請(qǐng)補(bǔ)全圖形,再過點(diǎn)作于點(diǎn),然后探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若,且點(diǎn)滿足,直接寫出點(diǎn)到的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與兩軸分別交于A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(1,0).點(diǎn)P在第二象限內(nèi)的拋物線上運(yùn)動(dòng),作PD⊥x軸于點(diǎn)D,交直線AC于點(diǎn)E.
(1)b= ;c= ;
(2)求線段PE取最大值時(shí)點(diǎn)P的坐標(biāo),這個(gè)最大值是多少;
(3)連接AP,并以AP為邊作等腰直角△APQ,當(dāng)頂點(diǎn)Q恰好落在拋物線的對(duì)稱軸上時(shí),直接寫出對(duì)應(yīng)的P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)C、B分別在軸、軸上,△ABC是等腰直角三角形,∠BAC=90°,已知A(2,2)、P(1,0).M為BC的中點(diǎn),則PM的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com