【題目】作圖題.

(1)如圖,在圖①所給的方格紙中,每個小正方形的邊長都是1,標號為①②③的三個三角形均為格點三角形(頂點在方格的頂點處),請按要求將圖②中的指定圖形分割成三個三角形,使它們與標號為①②③的三個三角形分別對應全等(分割線畫成實線);

(2)如圖③,在邊長為1個單位長度的小正方形組成的正方形網(wǎng)格中,點都在小正方形的頂點上.

①在圖中畫出與關于直線成軸對稱的;

②請在直線上找一點,使得的距離之和最小.

【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.

【解析】

(1)根據(jù)圖1中三角形的邊長將圖2中的圖形分割即可;
(2)①作出各點關于直線l的對稱點,再順次連接各點即可;
②連接CB′交直線l于點P,則點P即為所求點.

(1) 如圖②所示 .

(2) 如圖③所示 .

(3) 的位置如圖③所示.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次中學生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖和圖,請根據(jù)相關信息,解答下列問題:

)圖1中a的值為 ;

)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復賽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小偉遇到這樣一個問題:如圖1,在ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊PBC,求AP的最大值.

小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉(zhuǎn)中心將ABP逆時針旋轉(zhuǎn)60°得到A′BC,連接A′A,當點A落在A′C上時,此題可解(如圖2).

請你回答:AP的最大值是   

參考小偉同學思考問題的方法,解決下列問題:

如圖3,等腰RtABC.邊AB=4,PABC內(nèi)部一點,則AP+BP+CP的最小值是   .(結(jié)果可以不化簡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交ACAB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A,B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A,C,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.

(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項是(
A.abc<0
B.4ac﹣b2<0
C.a﹣b+c<0
D.2a+b<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

數(shù)學活動課上,老師出了一道作圖問題:如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”

小艾的作法如下:

(1)在直線l上任取點A,以A為圓心,AP長為半徑畫。

(2)在直線l上任取點B,以B為圓心,BP長為半徑畫。

(3)兩弧分別交于點P和點M

(4)連接PM,與直線l交于點Q,直線PQ即為所求.

老師表揚了小艾的作法是對的.

請回答:小艾這樣作圖的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學課上,老師提出如下問題:

尺規(guī)作圖:作對角線等于已知線段的菱形.

已知:兩條線段a、b.

求作:菱形AMBN,使得其對角線分別等于b2a.

尺規(guī)作圖:作對角線等于已知線段的菱形.

已知:兩條線段a、b.

求作:菱形AMBN,使得其對角線分別等于b2a.

小軍的作法如下:

如圖

(1)畫一條線段AB等于b;

(2)分別以A、B為圓心,大于AB的長為半徑,

在線段AB的上下各作兩條弧,兩弧相交于P、Q兩點;

(3)作直線PQABO點;

(4)O點為圓心,線段a的長為半徑作兩條弧,交直線PQM、N兩點,連接AM、AN、BM、BN.所以四邊形AMBN就是所求的菱形.

如圖

(1)畫一條線段AB等于b;

(2)分別以A、B為圓心,大于AB的長為半徑,

在線段AB的上下各作兩條弧,兩弧相交于P、Q兩點;

(3)作直線PQABO點;

(4)O點為圓心,線段a的長為半徑作兩條弧,交直線PQM、N兩點,連接AM、AN、BM、BN.所以四邊形AMBN就是所求的菱形.

老師說:小軍的作法正確.

該上面尺規(guī)作圖作出菱形AMBN的依據(jù)是_______________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:(﹣2)2+( ﹣1)0 ﹣( 1
(2)簡化( )÷

查看答案和解析>>

同步練習冊答案