【題目】(1)如圖,求證
(2)如圖,為垂足,平分交于點.求的度數(shù).
(3)已知
①如圖1,求的度數(shù);
②如圖2,和的平分線相交于點,求的度數(shù);
③在圖2中,畫和平分線相交于點,求的度數(shù)(直接寫出結果即可)
【答案】(1)見解析;(2) ;(3) ①;②;③畫圖見解析,.
【解析】
(1)先觀察題目中的圖形,結合題目的信息找到判定直線平行的條件,運用同旁內角互補兩直線平行即可證明;
(2)運用平行的性質,兩直線平行,內錯角相等,再通過計算即可得到答案;
(3) ①連接AC,運用直線平行的性質和三角形的內角和等于180°即可得到答案;
②連接AC,運用直線平行的性質和角平分線的性質以及四邊平的內角和等于360°即可得到答案;
③先作圖,再和②一樣計算即可得到答案;
(1)證明:,
∴∠B=∠C(兩直線平行,內錯角相等),
又∵,
∴(等量替換),
∴(同旁內角互補,兩直線平行).
(2)證明:,
∴(兩直線平行,內錯角相等),
又∵平分交于點,
∴,
又∵,
∴,
∴,
∴;
(3) ①如圖,連接AC,
∵,
∴(兩直線平行,同旁內角互補),
又∵,
∴
∴;
②由①知,
又∵和的平分線相交于點,
∴,
∴;
③畫圖如下:
直接寫出∠F的度數(shù)為:;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C是不在同一條直線上的三點,請按下列要求畫圖并作答(畫圖時工具不限,不需寫出結論,只需畫出圖形、標注字母):
(1)畫直線BC,連接AC;
(2)畫線段BC的中點D,連接AD;
(3)畫出∠ADC的平分線交AC于點E;
(4)若∠BDA=求∠ADC,∠EDC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】試根據(jù)圖中信息,解答下列問題.
(1)一次性購買6根跳繩需_____元,一次性購買12根跳繩需______元;
(2)小紅比小明多買2根,付款時小紅反而比小明少5元,你認為有這種可能嗎?若有,請求出小紅購買跳繩的根數(shù);若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知一次函數(shù)y=﹣x+6與x,y軸分別交于A,B兩點,點C(0,n)是線段BO上一點,將△AOB沿直線AC折疊,點B剛好落在x軸負半軸上,則點C的坐標是( )
A. (0,3) B. (0,) C. (0,) D. (0,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a<0)的對稱軸為x=1,交x軸的一個交點為(x1 , 0),且﹣1<x1<0,有下列5個結論:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的實數(shù))其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙二人共同計算2(a+x)(b+x),由于甲抄錯了第一個多項式中a的符號,得到結果為;由于乙抄漏了2,得到的結果為
(1)求a、b的值 ;
(2)求出正確的結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上高,若AD=16,CD=12,BD=9.
(1)求△ABC的周長;
(2)判斷△ABC的形狀并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AC的表達式為y=x+8,點P從點A開始沿AO向點O以1個單位/s的速度移動,點Q從點O開始沿OC向點C以2個單位/s的速度移動.如果P,Q兩點分別從點A,O同時出發(fā),經(jīng)過幾秒能使△PQO的面積為8個平方單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過點(4,3),且當 時, 有最小值 .
(1)求這條拋物線的解析式.
(2)寫出 隨 的增大而減小的自變量 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com