如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當其中一點到達終點時,另一點也隨之停止運動.設運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
(1)y=-x2+8x,自變量取值范圍:0<x≤4;
(2)△PBQ的面積的最大值為16cm2

試題分析:(1)根據(jù)矩形的對邊相等表示出BC,然后表示出PB、QB,再根據(jù)三角形的面積列式整理即可得解,根據(jù)點Q先到達終點確定出x的取值范圍即可;
(2)利用二次函數(shù)的最值問題解答.
試題解析:(1)∵四邊形ABCD是矩形,
∴BC=AD=4,
根據(jù)題意,AP=2x,BQ=x,
∴PB=16-2x,
∵SPBQ=,
∴y=-x2+8x
自變量取值范圍:0<x≤4;
(2)當x=4時,y有最大值,最大值為16
∴△PBQ的面積的最大值為16cm2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

是二次函數(shù),則m=      。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).

(1)求m的值及點A的坐標;
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結A′B、BE′.
①當點E′落在該二次函數(shù)的圖象上時,求AA′的長;
②設AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
③當A′B+BE′取得最小值時,求點E′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=ax²-6ax+c(a>0)的圖像拋物線過點C(0,4),設拋物線的頂點為D。

(1)若拋物線經(jīng)過點(1,-6),求二次函數(shù)的解析式;
(2)若a=1時,試判斷拋物線與x軸交點的個數(shù);
(3)如圖所示A、B是⊙P上兩點,AB=8,AP=5。且拋物線過點A(x1,y1),B(x2,y2),并有AD=BD。設⊙P上一動點E(不與A、B重合),且∠AEB為銳角,若<a≤1時,請判斷∠AEB與∠ADB的大小關系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖是二次函數(shù)圖像的一部分,其對稱軸是,且過點(-3,0),下列說法:①<0 ④若(-5,y1),(1,y2)是拋物線上兩點,則,其中說法正確的是(   )
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果拋物線與拋物線關于軸對稱,則=        ,=       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將二次函數(shù)化為的形式,結果為(      )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù) 的圖象經(jīng)過原點,則m=_________

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知x=2m+n+2和x=m+2n時,多項式x2+4x+6的值相等,且m﹣n+2≠0,則當x=3(m+n+1)時,多項式x2+4x+6的值等于  

查看答案和解析>>

同步練習冊答案