【題目】如圖,小明為了測(cè)量校園里旗桿的高度,將測(cè)角儀豎直放在距旗桿底部點(diǎn)的位置,在處測(cè)得旗桿頂端的仰角為,若測(cè)角儀的高度是,則旗桿的高度約為(精確到,參考數(shù)據(jù):,,)( )
A. 8.5米B. 9米C. 9.5米D. 10米
【答案】C
【解析】
過(guò)D作DE⊥AB,根據(jù)矩形的性質(zhì)得出BC=DE=6m根據(jù)正切函數(shù)的定義,由AE=DEtan53°算出AE的長(zhǎng),根據(jù)AB=AE+BE=AE+CD算出答案.
過(guò)D作DE⊥AB于點(diǎn)E,
∵在D處測(cè)得旗桿頂端A的仰角為53°,
∴∠ADE=53°.
∵BC=DE=6m,
∴AE=DEtan53°≈6×1.33≈7.98m,
∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】太陽(yáng)能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國(guó)普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè).如圖是太陽(yáng)能電池板支撐架的截面圖,其中線(xiàn)段AB、CD、EF表示支撐角鋼,太陽(yáng)能電池板緊貼在支撐角鋼AB上且長(zhǎng)度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點(diǎn)分別為D、F,CD垂直于地面,FE⊥AB于點(diǎn)E.點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長(zhǎng)度各是多少.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),拋物線(xiàn)經(jīng)過(guò)點(diǎn)、.
(1)求、滿(mǎn)足的關(guān)系式及的值.
(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.
(3)如圖,當(dāng)時(shí),在拋物線(xiàn)上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交軸于、兩點(diǎn),其中點(diǎn)坐標(biāo)為,與軸交于點(diǎn).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)如圖①,連接,點(diǎn)在拋物線(xiàn)上,且滿(mǎn)足.求點(diǎn)的坐標(biāo);
(3)如圖②,點(diǎn)為軸下方拋物線(xiàn)上任意一點(diǎn),點(diǎn)是拋物線(xiàn)對(duì)稱(chēng)軸與軸的交點(diǎn),直線(xiàn)、分別交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn)、.請(qǐng)問(wèn)是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)方法選擇
如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.
小穎認(rèn)為可用截長(zhǎng)法證明:在上截取,連接…
小軍認(rèn)為可用補(bǔ)短法證明:延長(zhǎng)至點(diǎn),使得…
請(qǐng)你選擇一種方法證明.
(2)類(lèi)比探究
(探究1)
如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線(xiàn)段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(探究2)
如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線(xiàn)段,,之間的等量關(guān)系式是______.
(3)拓展猜想
如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線(xiàn)段,,之間的等量關(guān)系式是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠ABC=30°,AC=3,動(dòng)點(diǎn)D從點(diǎn)A出發(fā),在AB邊上以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),連結(jié)CD,作點(diǎn)A關(guān)于直線(xiàn)CD的對(duì)稱(chēng)點(diǎn)E,設(shè)點(diǎn)D運(yùn)動(dòng)時(shí)間為t(s).
(1)若△BDE是以BE為底的等腰三角形,求t的值;
(2)若△BDE為直角三角形,求t的值;
(3)當(dāng)S△BCE≤時(shí),所有滿(mǎn)足條件的t的取值范圍 (所有數(shù)據(jù)請(qǐng)保留準(zhǔn)確值,參考數(shù)據(jù):tan15°=2﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長(zhǎng)為,的邊長(zhǎng)為,則的內(nèi)切圓半徑為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車(chē),從入口處出發(fā),沿該公路開(kāi)往草甸,途中停靠塔林(上下車(chē)時(shí)間忽略不計(jì)).第一班車(chē)上午8點(diǎn)發(fā)車(chē),以后每隔10分鐘有一班車(chē)從入口處發(fā)車(chē).小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達(dá)入口處,因還沒(méi)到班車(chē)發(fā)車(chē)時(shí)間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程(米)與時(shí)間(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車(chē)離入口處的路程(米)與時(shí)間(分)的函數(shù)表達(dá)式.
(2)求第一班車(chē)從人口處到達(dá)塔林所蓄的時(shí)間.
(3)小聰在塔林游玩40分鐘后,想坐班車(chē)到草甸,則小聘聰最早能夠坐上第幾班車(chē)?如果他坐這班車(chē)到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車(chē)速度均相同,小聰步行速度不變)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)與軸相交于、兩點(diǎn),與軸交于點(diǎn),且tan.設(shè)拋物線(xiàn)的頂點(diǎn)為,對(duì)稱(chēng)軸交軸于點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)為拋物線(xiàn)的對(duì)稱(chēng)軸上一點(diǎn),為軸上一點(diǎn),且.
①當(dāng)點(diǎn)在線(xiàn)段(含端點(diǎn))上運(yùn)動(dòng)時(shí),求的變化范圍;
②當(dāng)取最大值時(shí),求點(diǎn)到線(xiàn)段的距離;
③當(dāng)取最大值時(shí),將線(xiàn)段向上平移個(gè)單位長(zhǎng)度,使得線(xiàn)段與拋物線(xiàn)有兩個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com